LIFTING AND HOISTING

1. Overview
 • Purpose
 • Applicability

2. Scope
 • Offshore Pedestal Cranes
 • Mobile Cranes
 • Shin-Pole Trucks/Derricks
 • Articulating Boom Cranes
 • Overhead Cranes
 • Aerial Platforms
 • Powered Industrial Trucks
 • Excavating Equipment
 • Hoists (Excluding Personnel Lifting)
 • Jacks
 • Winches
 • Beam Clamps
 • Fixed Lifting Points

Tools
 • Glossary (TO.01)
 • References and Companion Documents (TO.02)
 • Roles and Responsibilities (TO.03)

OPS0055-PR01 Procedure
Design Requirements

OPS0055-PR02 Procedure
Operational Requirements

OPS0055-PR03 Procedure
Testing and Inspection Requirements

OPS0055-PR04 Procedure
Maintenance and Repair Requirements

OPS0055-PR05 Procedure
Competency Requirements

Tool
 • Lift Categorization and Work Authorization Table (TO.01)
 • Lift Planning Flowchart and Tables (TO.02)
 • Complex Lift Plan (TO.03)
 • Critical Lift Plan (TO.04)
 • DW-GOM Crane Communications (TO.05)
 • Crane Cab Decals (TO.06)
 • Pedestal Crane Inspection Form (TO.07)
 • Pre-Start Checklist for Man-riding Operations (TO.08)
 • Structural/Piping Guideline Matrix (TO.09)
 • Pre-Shipping Inspection Checklist (TO.10)
 • Lifted Equipment Certification Exemption List (TO.11)
 • DW-GOM Lifted Equipment Certification Form (TO.12)
 • Letter to Suppliers (TO.13)

Document Suite Map
1 Overview

1.1 Purpose
To prevent incidents associated with lifting and hoisting, this Standard establishes Shell Upstream Deep Water Gulf of Mexico (DW-GOM) requirements for the:
- operation, maintenance, testing, certification, inspection, and design of lifting equipment and
- competency and qualifications of individuals involved with these operations.

NOTE: Design requirements in this Standard are not inclusive.

1.2 Applicability
This Standard applies to work performed on:
- DW-GOM installations,
- leases, or
- right-of-ways.

This Standard also applies to work performed during:
- road,
- marine, or
- aviation operations supporting this work.

1.3 Specific Exclusions/Clarifications
This Standard does not apply to the following lifting operations:
- Personnel and cargo elevators
- Diving or underwater lifting operations
- Well operations involving the crown block, traveling block, and top-drive systems
- Mining and earth moving equipment
- Lumber (timber) logging
- Vehicle maintenance lifts
- Mobile cranes on barges
- Helicopter lifting
- Manual lifting
- Operations by piling machines
- Geophysical and coring operations
- Pipe-laying operations
- Derrick barge operations

1.4 Summary of Changes
Changes for each revision are recorded in the Change Matrix.

1.5 References/Companion Documents
See OPS0055-TO.02 for a complete list of reference and companion documents.
1.6 Roles and Responsibilities

See OPS0055-TO.03 for a table of DW-GOM lifting and hoisting roles and responsibilities.

1.7 HSE Responsibility

The Offshore Installation Manager (OIM) /Person In Charge (PIC) is the "Ultimate Work Authority (UWA)" on all DW-GOM Locations.

On DW-GOM locations, HSE Responsibility for the operation of offshore pedestal-mounted cranes will be as follows:
- PT Wells will have HSE Responsibility when there is drilling, workover or abandonment operation involving a rig or similar well removal equipment (i.e. pulling unit).
- Producing Operations will have HSE Responsibility for all other work modes outside of those described in bullet 1.

NOTE: Clear handover of responsibility between PT Wells and Producing Operations when conditions change (Rig up vs Rig down, etc.) is accomplished by updating the Concurrent Operating Agreement (COA).

HSE Responsibility includes but is not limited to:
- Safe execution of offshore pedestal mounted crane operations
- Ensuring personnel performing lifts (Qualified Operators (QOs), Designated Signal Persons (DSPs), Riggers, etc.) have the proper training and qualifications as defined in OPS0055-PR05 Competency Requirements
- Executing daily/monthly routine inspections
- Incident ownership and subsequent investigations

A lifting and hoisting Responsible, Accountable, Consulted, Informed (RACI) chart with details for different scenarios around crane operations, maintenance, inspections, competencies, standards and investigations can be found by clicking the Crane Governance information link located on the front page of this Standard in the yellow menu box.

1.8 Key Milestones

<table>
<thead>
<tr>
<th>Approval Date</th>
<th>November 17, 2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>Implementation Dates</td>
<td>December 01, 2016</td>
</tr>
</tbody>
</table>
2 Scope

2.1 General

The lifting equipment covered in this document suite is grouped into the following categories as depicted in the diagram below:

- Lifting appliances (mechanical and support devices that do the lifting)
- Lifting accessories (rigging that connects items being lifted to the lifting appliance)
- Lifted equipment (items being lifted)

The following sub-sections provide additional details for select lifting equipment.

2.2 Offshore Pedestal Cranes

Includes all offshore pedestal-mounted revolving cranes.

2.3 Mobile Cranes

Includes mobile cranes powered by internal combustion engines or electric motors, such as:

- crawler cranes,
- locomotive cranes, and
- wheel-mounted cranes.

The following are not in the scope of this Standard:

- Side boom tractors
- Cranes designed for railway and automobile wreck clearance
- Digger derricks
- Cranes designed or used for electrical energized line service
- Trolley boom cranes
2.4 Gin-Pole Trucks and Derricks
Includes all equipment that meets the following description: An apparatus consisting of a mast or equivalent member held at the end by guys or braces with or without a boom, for use with a hoisting mechanism and operating ropes.

Excludes drilling derricks.

2.5 Articulating Boom Cranes
Includes all equipment that meets the following description: Cranes articulated by hydraulic cylinders powered by internal combustion engines or electric motors and mounted on mobile chassis, e.g. autocranes.

NOTE: This definition applies only to articulating boom cranes rated 5 tons or less. Any articulating boom crane rated greater than 5 tons is considered a mobile crane in this Standard.

2.6 Overhead Cranes
Includes overhead cranes (see figures below), powered or manually operated, that have a hoist that can move with a load attached, such as:

- gantry cranes (including fixed or moveable),
- monorail and underhung cranes,
- top-running bridges of single or double-girder construction,
- top-running trolleys,
- cab-operated cranes, and
- floor-operated cranes.

Excludes overhead hoists.
Overhead Crane (Single-Girder with Underhung Hoist)

2.7 Aerial Platforms
Includes appliances used to lift personnel, such as:
- extensible boom platforms,
- aerial ladders,
- articulating boom platforms,
- vertical towers (scissor lifts), and
- any combination of such devices.

Excludes all lifting accessories that are not integral to the lifting appliance, such as Billy Pugh baskets and man-riding harnesses.

2.8 Powered Industrial Trucks
Includes all powered industrial trucks, including forklifts, as listed in ASME B56.6 and OSHA 29 CFR 1910.178.

2.9 Excavating Equipment
In general, excavating equipment is not covered in this Standard. If a piece of excavating equipment will be used as a lifting appliance, approval must first be obtained from the manufacturer. The conditions and requirements for lifting must be indicated on this approval.

NOTE: Riggers and rigging equipment shall meet the requirements of this Standard.

2.10 Hoists, Excluding Personnel Lifting
Includes (see figures below):
- manual lever-operated ratchet/pawl or friction brake hoists that use chain, wire rope, and web strap hoists for lifting, pulling, and tensioning applications, and
- manually operated chain hoists, electric- or air-powered chain hoists, and wire rope hoists for vertically lifting and lowering freely suspended and unguided loads.
2.11 Jacks

Includes (portable jacks as per ASME B30.1):
- hand- or power-operated hydraulic and screw jacks and
- mechanical ratchet jacks (see figures below).

Excludes:
- jacks for automotive service,
- trip-lowered jacks, and
- jacks that are an integral part of other equipment.
2.12 Winches
Includes all winches, except when used as follows:
• For horizontal pulls (e.g. winch trucks that support onshore drilling operations)
• As an integral part of other lifting equipment (e.g. overhead crane)

2.13 Beam Clamps
Includes any portable lifting device that clamps onto a structural beam to which a hoist is attached.

2.14 Fixed Lifting Points
Includes certified and uncertified fixed lifting points.
Definitions

The following table provides definitions of terms used in this document suite.

<table>
<thead>
<tr>
<th>Term/Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABS</td>
<td>American Bureau of Shipping</td>
</tr>
<tr>
<td>AISC</td>
<td>American Institute of Steel Construction</td>
</tr>
<tr>
<td>API</td>
<td>American Petroleum Institute</td>
</tr>
<tr>
<td>ANSI</td>
<td>American National Standards Institute</td>
</tr>
<tr>
<td>ASME</td>
<td>American Society of Mechanical Engineers</td>
</tr>
<tr>
<td>ASNT</td>
<td>American Society for Nondestructive Testing</td>
</tr>
<tr>
<td>ASSE</td>
<td>American Society of Safety Engineers</td>
</tr>
<tr>
<td>Below-the-Hook Lifting Devices</td>
<td>Devices used to attach the load to the hoisting gear below the hook (e.g. spreader bar).</td>
</tr>
<tr>
<td>CCU</td>
<td>Cargo Carrying Unit, a structural unit for repeated use in the transport of goods or permanent equipment handled in open seas to, from and between fixed and/or floating installations.</td>
</tr>
<tr>
<td>Certificate of Conformity</td>
<td>A document provided by a manufacturer confirming that equipment meets the requirements of an industry standard (e.g. ASME, ANSI).</td>
</tr>
<tr>
<td>Certification</td>
<td>A document that certifies that a piece of equipment has been tested and inspected for use. The document normally relates to a specific piece of equipment (one that has a unique ID number), and may be subject to a time limitation.</td>
</tr>
<tr>
<td>Certified</td>
<td>The state of the lifting device or equipment after maintenance, inspection, tests, or other operational checks have been performed and are current.</td>
</tr>
<tr>
<td>CFR</td>
<td>Code of Federal Regulation</td>
</tr>
<tr>
<td>CMAA</td>
<td>Crane Manufacturers Association of America</td>
</tr>
<tr>
<td>DSP</td>
<td>Designated Signal Person</td>
</tr>
<tr>
<td>DNV+GL</td>
<td>Det Norske Veritas and Germanischer Lloyd</td>
</tr>
<tr>
<td>DW-GOM Installation</td>
<td>Any structure or vessel (e.g. floating rig, derrick barge, lift boat, anchor handler, dive boat) owned by or operated on behalf of DW-GOM on DW-GOM leases or right-of-ways.</td>
</tr>
<tr>
<td>DW-GOM/Contractor Supervisor</td>
<td>The highest ranking DW-GOM or contractor Supervisor on the worksite. The DW-GOM/Contractor Supervisor is responsible for all lifting and hoisting activities on a location. DW-GOM/Contractor Supervisor will identify a Lift Sponsor for each lifting activity. (Examples of DW-GOM/Contractor Supervisors include an OIM or PIC for a platform or rig, or the Master of a vessel)</td>
</tr>
<tr>
<td>EN</td>
<td>European National Standards</td>
</tr>
<tr>
<td>FIBCA</td>
<td>Flexible Intermediate Bulk Container Association</td>
</tr>
<tr>
<td>HAKO</td>
<td>High Angle Kick Out</td>
</tr>
<tr>
<td>IADC</td>
<td>International Association of Drilling Contractors</td>
</tr>
<tr>
<td>ICGB</td>
<td>International Cargo Gear Bureau</td>
</tr>
<tr>
<td>JSA</td>
<td>Job Safety Analysis</td>
</tr>
<tr>
<td>Lift Sponsor</td>
<td>An individual appointed by the DW-GOM Supervisor to coordinate and control all aspects of the lifting operation (e.g. Crane Operator, Deck Foreman).</td>
</tr>
<tr>
<td>LLFP</td>
<td>Local Lifting Focal Point</td>
</tr>
<tr>
<td>LR</td>
<td>Lloyds Register</td>
</tr>
<tr>
<td>MBL</td>
<td>Minimum Breaking Load</td>
</tr>
<tr>
<td>NRTL</td>
<td>Nationally Recognized Testing Laboratory</td>
</tr>
<tr>
<td>OEM</td>
<td>Original Equipment Manufacturer</td>
</tr>
<tr>
<td>Operational Test</td>
<td>A test to validate that a piece of equipment is functioning properly.</td>
</tr>
<tr>
<td>OSHA</td>
<td>Occupational Safety and Health Administration</td>
</tr>
<tr>
<td>Qualified Inspector (QI)</td>
<td>A person trained in inspection in accordance with API RP 2D.</td>
</tr>
<tr>
<td>Qualified Operator (QO) (per API RP 2D)</td>
<td>A person designated by the employer or the employer’s representative, who by virtue of his/her knowledge, training and experience, has successfully demonstrated the ability to perform specific duties relating to the subject matter and the work.</td>
</tr>
<tr>
<td>Term/Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Includes:</td>
<td></td>
</tr>
<tr>
<td>offshore pedestal crane QOs</td>
<td></td>
</tr>
<tr>
<td>mobile crane operators</td>
<td></td>
</tr>
<tr>
<td>Qualified Person (QP) (per ASME)</td>
<td>A person who by possession of a recognized degree in applicable field, or certificate of professional standing or who, by extensive knowledge, training, and experience, has successfully demonstrated the ability to solve or resolve problems relating to the subject matter or work. Includes all lifting appliance operators not listed under QO.</td>
</tr>
<tr>
<td>SWL</td>
<td>Safe Working Load</td>
</tr>
<tr>
<td>SCI</td>
<td>Specialist Crane Inspector</td>
</tr>
<tr>
<td>Stinger</td>
<td>A wire rope sling made up of hard terminations incorporating a hook on one end and a masterlink on the other, used to extend the load block of a lifting appliance.</td>
</tr>
<tr>
<td>Toolbox Talk</td>
<td>Brief onsite safety meeting to discuss job scope, work authorization, and associated hazards and remediations.</td>
</tr>
<tr>
<td>USCG</td>
<td>United States Coast Guard</td>
</tr>
<tr>
<td>WOTL</td>
<td>Well Operations Team Leader</td>
</tr>
<tr>
<td>Working Load Limit (WLL)(also known as Rated Load or Rated Capacity)</td>
<td>The maximum load the lifting equipment must operationally handle and maintain.</td>
</tr>
</tbody>
</table>
References and Companion Documents

Documents in this suite are listed in the table below.

<table>
<thead>
<tr>
<th>Document Number</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPS0055</td>
<td>Lifting and Hoisting</td>
</tr>
<tr>
<td>OPS0055-TO.01</td>
<td>Glossary</td>
</tr>
<tr>
<td>OPS0055-TO.02</td>
<td>References and Companion Documents</td>
</tr>
<tr>
<td>OPS0055-TO.03</td>
<td>Roles and Responsibilities</td>
</tr>
<tr>
<td>OPS0055-PR01</td>
<td>Design Requirements</td>
</tr>
<tr>
<td>OPS0055-PR02</td>
<td>Operational Requirements</td>
</tr>
<tr>
<td>OPS0055-PR02-TO.01</td>
<td>Lift Categorization and Work Authorization Table</td>
</tr>
<tr>
<td>OPS0055-PR02-TO.02</td>
<td>Lift Planning Flowchart and Tables</td>
</tr>
<tr>
<td>OPS0055-PR02-TO.03</td>
<td>Complex Lift Plan</td>
</tr>
<tr>
<td>OPS0055-PR02-TO.04</td>
<td>Critical Lift Plan</td>
</tr>
<tr>
<td>OPS0055-PR02-TO.05</td>
<td>DW-GOM Crane Communications</td>
</tr>
<tr>
<td>OPS0055-PR02-TO.06</td>
<td>Crane Cab Decals</td>
</tr>
<tr>
<td>OPS0055-PR02-TO.07</td>
<td>Pedestal Crane Inspection Form</td>
</tr>
<tr>
<td>OPS0055-PR02-TO.08</td>
<td>Pre-Start Checklist for Man-Riding Operations</td>
</tr>
<tr>
<td>OPS0055-PR02-TO.09</td>
<td>Structural/Piping Guideline Load Matrix</td>
</tr>
<tr>
<td>OPS0055-PR02-TO.10</td>
<td>Pre-Shipping Inspection Checklist</td>
</tr>
<tr>
<td>OPS0055-PR02-TO.11</td>
<td>Lifted Equipment Certification Exemption List</td>
</tr>
<tr>
<td>OPS0055-PR02-TO.12</td>
<td>DW-GOM Lifted Equipment Certification Form</td>
</tr>
<tr>
<td>OPS0055-PR02-TO.13</td>
<td>Letter to Suppliers</td>
</tr>
<tr>
<td>OPS0055-PR03</td>
<td>Testing and Inspection Requirements</td>
</tr>
<tr>
<td>OPS0055-PR03-TO.01</td>
<td>Testing and Inspection Matrix</td>
</tr>
<tr>
<td>OPS0055-PR04</td>
<td>Maintenance and Repair Requirements</td>
</tr>
<tr>
<td>OPS0055-PR05</td>
<td>Competency Requirements</td>
</tr>
<tr>
<td>OPS0055-PR05-TO.01</td>
<td>Competency Matrix</td>
</tr>
<tr>
<td>OPS0055-PR05-TO.02</td>
<td>Training Course Details</td>
</tr>
<tr>
<td>OPS0055-PR05-TO.03</td>
<td>Offshore Pedestal Crane Operator Authorization Level Verification Form</td>
</tr>
</tbody>
</table>

Reference Documents

Shell control documents, government regulations, and industry standards and codes referenced in this document suite are listed in the table below.

<table>
<thead>
<tr>
<th>Document Number</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEP 37.92.10.30-GEN</td>
<td>Offshore Pedestal-Mounted Cranes (Amendments/Supplements to API SPEC 2C)</td>
</tr>
<tr>
<td>HSE0044</td>
<td>Fall Prevention and Protection</td>
</tr>
<tr>
<td>OPS0011</td>
<td>Marine Transportation Operations</td>
</tr>
<tr>
<td>OPS0168A-PR01</td>
<td>General Requirements for All Personnel Transfers</td>
</tr>
<tr>
<td>UAD-101-068</td>
<td>Structural Steel Design of Small Deepwater Offshore Skids, Facility Packages, and Subsea Sleds and Manifolds, Amendments/Supplements to DEP 37.81.10.31-Gen.</td>
</tr>
</tbody>
</table>

External Documents

- American Bureau of Shipping Guide for Certification of Offshore Containers
- American Rigging and Lifting Handbook
- ANSI/ASSE A10.4 Safety Requirements for Personnel Hoists and Employee Elevators on Construction and Demolition Sites
- ANSI/ASSE A10.22 Safety Requirements for Rope-Guided & Non-Guided Workers' Hoists
- ANSI A92.2 Vehicle Mounted Elevating and Rotating Platforms
- ANSI A92.3 Manually Propelled Elevating Aerial Platforms
<table>
<thead>
<tr>
<th>Document Number</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>API RP 2A-WSD</td>
<td>Planning, Designing and Constructing Fixed Offshore Platforms - Working Stress Design</td>
</tr>
<tr>
<td>API RP 2D</td>
<td>API Recommended Practice for Operation and Maintenance of Offshore Cranes</td>
</tr>
<tr>
<td>API 2C</td>
<td>Specification for Offshore Pedestal Mounted Cranes</td>
</tr>
<tr>
<td>ASME B30.1</td>
<td>Jacks</td>
</tr>
<tr>
<td>ASME B30.2</td>
<td>Overhead and Gantry Cranes (Top-Running Bridge, Single or Multiple Girder, Top-Running Trolley Hoist)</td>
</tr>
<tr>
<td>ASME B30.4</td>
<td>Portal, Tower, and Pedestal Cranes</td>
</tr>
<tr>
<td>ASME B30.5</td>
<td>Mobile and Locomotive Cranes</td>
</tr>
<tr>
<td>ASME B30.6</td>
<td>Derricks</td>
</tr>
<tr>
<td>ASME/ANSI B30.7</td>
<td>Base-Mounted Drum Hoists</td>
</tr>
<tr>
<td>ASME/ANSI B30.9</td>
<td>Slings</td>
</tr>
<tr>
<td>ASME/ANSI B30.10</td>
<td>Hooks</td>
</tr>
<tr>
<td>ASME/ANSI B30.11</td>
<td>Monorail and Underhung Cranes</td>
</tr>
<tr>
<td>ASME/ANSI B30.12</td>
<td>Handling Loads Suspended from Rotorcraft</td>
</tr>
<tr>
<td>ASME/ANSI B30.14</td>
<td>Side Boom Tractors</td>
</tr>
<tr>
<td>ASME/ANSI B30.16</td>
<td>Overhead Hoists (Underhung)</td>
</tr>
</tbody>
</table>
| ASME/ANSI B30.17| Overhead and Gantry Cranes (Top-Running Bridge, Single Girder, Underhung Hoists)
| ASME/ANSI B30.20| Below-the-Hook Lifting Devices |
| ASME/ANSI B30.21| Manually Lever Operated Hoists |
| ASME/ANSI B30.22| Articulating Boom Cranes |
| ASME/ANSI B30.23| Personnel Lifting Systems |
| ASME/ANSI B30.26| Rigging Hardware |
| ASME/ANSI B56.6 | Powered and Nonpowered Industrial Trucks |
| DNV-GL 2.7-1 | Standard for Certification of Offshore Containers |
| EN 12079 | Offshore Containers and Associated Lifting Sets |
| -- | IADC Gin Pole Truck Guidelines |
| ISO 3874 | Series 1 freight containers -- Handling and securing |
| ISO 21898 | Packaging - Flexible intermediate bulk containers (FIBCs) for non-dangerous goods |
| OSHA 29 CFR 1910.28 | Safety Requirements for Scaffolding |
| OSHA 29 CFR 1910.68 | Manlifts |
| OSHA 29 CFR 1910.178 | Powered Industrial Trucks |
| OSHA 29 CFR 1910.179 | Overhead and gantry cranes |
| OSHA 29 CFR 1910.180 | Crawler locomotive and truck cranes |
| OSHA 29 CFR 1926.451 | General Requirements: Scaffolding |
| OSHA 29 CFR 1926.453 | Aerial Lifts |
| OSHA 29 CFR 1926.550 | Cranes and Derricks |
| RR-C-271D | Federal Specification - Chains and Attachments, Carbon and Alloy Steel |
| SAE J765 | Crane Load Stability Test Code |
| SAE J987 | Lattice Boom Cranes Method of test |
| USCG 46 CFR 109.437 | Crane record book |
| -- | Web Sling & Tie Down Association specifications |
Roles and Responsibilities

The following table describes the responsibilities of personnel involved in lifting operations (listed in alphabetical order). Qualifications for personnel described in this document are listed on the Competency Matrix.

<table>
<thead>
<tr>
<th>Role</th>
<th>Responsibilities</th>
</tr>
</thead>
</table>
| Competency Assessor, Offshore Pedestal Crane | • Attend required training and competency assessment tool.
• Perform offshore pedestal crane QO competency assessments in a fair and unbiased manner.
• Report offshore pedestal crane QO competency assessment results to the M&I Crane Resource Coordinator and/or DW-GOM’s Training Database. |
| DSP | • Ensure riggers are in safe position before and during lift.
• Participate in Lift Planning/JSA/risk assessment of lifting operations.
• Maintain communication with crane operator (radio/visual).
• Provide signals for the lifting, moving, and setting down of load when needed.
• Wear a high-visibility vest. |
| Lift Sponsor | • Plan and execute lifts in accordance with the requirements in the Lift Planning section of this Standard.
• Make himself/herself known to all persons directly involved in the lift and those involved in concurrent operations that could interact with the lift.
• Coordinate and control all aspects of the lifting operations, including:
 • Ensuring that every person involved is competent to perform his or her task.
 • Ensuring that every person involved is aware of the task, the procedures to be followed, and his or her responsibilities. |
| Crane Owners | Operations and Maintenance Team Leader on TLP/Spar or PIC for fixed leg platforms
• Accountable for Lifting equipment maintenance and interfacing with MDT
• Maintaining regulatory paperwork
• Provide support for crane and lifting issues |
| Operations Services Team Leader on TLP/Spar or PIC for fixed leg platforms | • Responsible for ensuring qualifications of all Non-crane lifting and hoisting operations.
• Support LLFP in ensuring qualifications of Crane Operations
• Provide support for crane and lifting issues |
| QI – General | Perform and document the following inspections for equipment in their area of responsibility according to the Inspection and Testing Matrix:
• Pre-Use, Monthly, and Quarterly for all equipment
• Annual and Heavy Lifting for contract cranes |
| QI – Offshore (Offshore Pedestal Cranes) | • Perform and document load testing of offshore pedestal cranes.
• Determine the need to replace wire rope on offshore pedestal cranes.
• Conduct quarterly and annual inspections |
| QI – Rigging Gear | • Inspect all containers and pre-slung cargo rigging for shipment offshore.
• Check container and sling certification. |
| QO/QP – General | • Operate lifting appliances as per applicable sections of this Standard.
• Perform Daily/Pre-Use and Monthly documented/undocumented inspections.
• Perform operational and load testing.
• Perform first-line maintenance.
• Participate in Lift Planning/JSA/risk assessment of lifting operations as per Lift Planning section of this Standard.
• Address any safety concerns before or during any lifting operations (including weather... |
<table>
<thead>
<tr>
<th>Role</th>
<th>Responsibilities</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Adhere to any tags placed on crane.</td>
</tr>
<tr>
<td></td>
<td>Perform lifts.</td>
</tr>
<tr>
<td></td>
<td>Repair or replace, or supervise the repair and replacement of any critical lifting equipment components.</td>
</tr>
<tr>
<td></td>
<td>Take the crane out of or restrict service if adjustments/repairs are necessary.</td>
</tr>
<tr>
<td></td>
<td>Inform the DW-GOM manager/supervisor and QI and request remedial action when a crane is taken out of service.</td>
</tr>
<tr>
<td></td>
<td>Refuse to handle loads or continue operations as safety dictates.</td>
</tr>
<tr>
<td></td>
<td>Ensure loads are not hoisted over personnel on any deck level.</td>
</tr>
<tr>
<td>QO – Gin Pole Truck</td>
<td>In addition to the general QO/QP responsibilities above, the QO for gin pole trucks has the following responsibilities:</td>
</tr>
<tr>
<td></td>
<td>Be at the controls at all times while the load is suspended.</td>
</tr>
<tr>
<td></td>
<td>Ensure that there is no sudden acceleration or deceleration of the moving load.</td>
</tr>
<tr>
<td></td>
<td>Ensure, when loads approach the maximum rating, that the weight of the load is determined within ±10% before it is lifted.</td>
</tr>
<tr>
<td></td>
<td>Take additional precautions, when using rotation resistant ropes with a design factor < 5 but in no case < 3.5, as follows:</td>
</tr>
<tr>
<td></td>
<td>Appoint a DSP.</td>
</tr>
<tr>
<td></td>
<td>Conduct operations in such a manner and at such speeds as to reduce dynamic effects.</td>
</tr>
<tr>
<td></td>
<td>Record lifts in inspection records.</td>
</tr>
<tr>
<td></td>
<td>Ascertain that the rope is in satisfactory condition both before and after lifting. More than one broken wire in any one layer is reason to consider not using the rope for such lifts.</td>
</tr>
<tr>
<td>QO – Mobile Crane</td>
<td>In addition to the general QO/QP responsibilities above, the QO for mobile cranes has the following responsibilities:</td>
</tr>
<tr>
<td></td>
<td>Complete all required crane operation logs.</td>
</tr>
<tr>
<td></td>
<td>Appoint a DSP.</td>
</tr>
<tr>
<td>Prior to the lift</td>
<td>For critical lifts, ensure the load does not exceed 75% of the crane’s rated capacity.</td>
</tr>
<tr>
<td></td>
<td>Ensure control of personnel in path of load.</td>
</tr>
<tr>
<td></td>
<td>Ensure the swing radius of the superstructure is barricaded to prevent unauthorized personnel from entering the area.</td>
</tr>
<tr>
<td></td>
<td>Obtain a Safe Work Permit approved at the DW-GOM Supervisor level or above for bypassing the boom kick-out, anti-two blocking, or other safety devices.</td>
</tr>
<tr>
<td></td>
<td>Ensure weight indicators are available to validate the weight of the load.</td>
</tr>
<tr>
<td></td>
<td>Adhere to blind lift requirements; ensure loads are kept in sight from time of pick up until the load and tag lines clear the deck.</td>
</tr>
<tr>
<td></td>
<td>Before leaving the control station unattended, secure the crane against uncontrolled travel or interference with other operations.</td>
</tr>
<tr>
<td>Role</td>
<td>Responsibilities</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>QO – Offshore Pedestal Crane</td>
<td>In addition to the general QO/QP responsibilities above, the QO for offshore pedestal cranes has the following responsibilities:
• Ensure lifts are carried out per lift plans
• Complete all required crane operation logs.
• Obtain a Safe Work Permit approved by the DW-GOM Supervisor when bypassing any safety device such as the boom kick-out or anti-two blocking.
• Appoint riggers to act as a load handler and a DSP.
• Wear a high visibility vest.
• Ensure the DSP is wearing a high visibility vest.
• Perform dynamic lifts from supply boats.
• Adhere to Blind Lift Requirements; ensure loads are kept in sight from time of pick up until the load and tag lines clear the deck.
• Keep a logbook to record all lifts. The following information will be entered:
 • Date of lift
 • Type of lift: static or dynamic
 • Category of lift: routine, critical, complex/engineered, or heavy engineered
 • Weight (approximate)
 • Supervised or unsupervised
 • Record authorization level verification records in his/her logbook to include the following:
 • Date
 • Signature
 • Authorization level achieved</td>
</tr>
<tr>
<td>QO – Overhead Crane</td>
<td>In addition to the general QO/QP responsibilities above, the QO for overhead cranes shall appoint a DSP if required.</td>
</tr>
<tr>
<td>Qualified Rigger (all types)</td>
<td>• Participate in JSA/risk assessment of lifting operations.
• Follow approved lift plan.
• Assess load to be lifted.
• Select rigging to suit load.
• Rig the load.
• Inspect the rigging and verify that it is satisfactory to use (including certification).
• Attach the load to the crane.
• Act as load handler.
• Ensure correct selection and pre-use inspection of rigging equipment.
• Maintain knowledge of standard hand signals.</td>
</tr>
<tr>
<td>UWA Ultimate Work Authority (formerly DW-GOM/ Contractor Supervisor)</td>
<td>• Identify a Lift Sponsor for each lifting operation.
• Ensure that personnel involved in lifting operations meet the requirements of the Competency Matrix.
• Post a list of Qualified Crane Operators on USCG-regulated facilities.
• Approve the use of chain slings when necessary.
For personnel lifts:
• Review alternate methods of lifting personnel.
• Ensure that each proposed personnel lift is the least hazardous, most practical method for performing the work.
• Ensure work permit is authorized in writing.
• Ensure that only QOs operate personnel lifting devices.
• Ensure that all personnel lifting devices are within inspection and testing intervals.
When offloading boats, the UWA, Lift Sponsor, QO, and the Boat Captain shall be jointly responsible for determining if weather conditions are satisfactory.
For Offshore Pedestal Cranes:
• Verify the authorization level of each QO.
• Enter the current authorization level of each QO in DW-GOM’s Training Database.</td>
</tr>
</tbody>
</table>
PROCEDURE OPS0055-PR01
DESIGN REQUIREMENTS
1 INTRODUCTION

1.1 Overview

1.1.1 Outline
This Procedure provides the design requirements for the following:
• Lifting appliances
• Lifting accessories
• Lifted equipment

2 LIFTING APPLIANCES

2.1 Cranes

2.1.1 Offshore Pedestal Cranes
Offshore cranes must be built in accordance with API Specification 2C or classed under the classification society of the vessel carrying the crane.

Additionally, offshore pedestal cranes must be equipped with:
• a functional weight indicator on the main hoist and auxiliary hoist, as well as a functional boom angle indicator (both must be visible to the operator),
• a swing locking mechanism (if equipped with single-swing drives and/or single-brake drives),
• anti-two blocking devices/systems (that stop the hoist from pulling up and the boom hoist from going down) installed on the main hoist and auxiliary hoist circuits,
• 1 high-intensity blue and 1 high-intensity amber strobe light affixed to the gantry top, and
• an emergency shutdown operable at the control station.

2.1.2 Mobile Cranes
Must be designed and constructed per ASME B30.5:
• All mobile cranes must be equipped with a functional weight indicator on the main hoist and auxiliary hoist, as well as a functional boom angle indicator (both must be visible to the operator).
• Telescoping boxed boom cranes must be equipped with an anti-two block device or a two-block damage prevention feature for all points of two-blocking (i.e. jibs, extensions).
• Lattice boom cranes must be equipped with an anti-two block device that functions for all points of two-blocking.
2.1.3 Gin-Pole Trucks and Derricks
Must be designed and constructed per the current edition of IADC publication Gin Pole Truck Guidelines. Only certified trucks are to be used; examined trucks per this IADC guideline are not acceptable.

2.1.4 Articulating Boom Cranes
- Must be designed and constructed per ASME B30.22.
- Telescoping boxed boom cranes must be equipped with an anti-two block device or a two-block damage prevention feature for all points of two-blocking (i.e. jibs, extensions).

2.1.5 Overhead Cranes
Requirements for overhead cranes are as follows:
- All cranes must be clearly marked with the rated load.
- If the crane has more than one hoist, each load block must be marked with its rated load (this marking must be legible from the ground floor).
- Manufacturers’ tags are required as per OSHA 29 CFR 1910.179.
- All cranes must be built in accordance with CMAA guidelines.
- Hoists will not be sized higher than beam capacity without factory re-rating or the use of pull limiters
- All design drawings will be stamped by a Registered Professional Engineer and available upon request.

2.2 Additional Appliances

2.2.1 Aerial Platforms
Must be designed and constructed in conformance with ANSI A92.2 Vehicle Mounted Elevating and Rotating Platforms.

Manual type mobile aerial platforms must comply with ANSI A92.3.

2.2.2 Powered Industrial Trucks
All equipment must be manufactured in accordance with ASME B56.6 and OSHA 29 CFR 1910.178.

2.2.3 Hoists
All manually operated lever hoists must be manufactured in accordance with ASME B30.21.

All overhead hoists (underhung) must be manufactured in accordance with ASME B30.16.

NOTE: Ratchet type manually operated lever hoists (without internal friction brakes) are not to be used for lifting or hoisting operations.
2.2.4 Jacks
All jacks must be manufactured in accordance with ASME B30.1.

2.2.5 Winches
All winches must be manufactured in accordance with ASME B30.7.

2.2.6 Mounting Portable Winches
Foundations for portable winches must be:
- certified by a licensed engineer,
- suitable for the intended purpose, and
- capable of supporting 125% of the maximum intended load.

The intended load may be less than the maximum rated load of the winch.

All portable winches must have a tag affixed indicating the maximum intended load as determined by the lesser of the winch or foundation capacity.

2.2.7 Man-Riding Winches
All man-riding winches shall be purpose-built and certified by manufacturer as personnel rated.

Conversion of base-mounted material hoists are not acceptable unless performed by OEM and meeting all safety requirements.

All safety devices for man-riding winches shall meet the requirements of ANSI/ASSE A10.22 and sub-references to ANSI/ASSE A10.4 and ASME B30.7.

The following is a non-inclusive list of required safety devices:
- Upper and lower limit device
- Slack line shutdowns
- Dead man controls
- Power up and power down
- Minimum second brake automatically applied
- Maximum line pull limiter

NOTE: Riders shall have the ability to physically halt operations at any time while riding above monkey board or below the rig floor.

2.2.8 Beam Clamps
At present, no standards exist to govern beam clamp design or manufacture; but the onshore/offshore industry generally uses the type that clamps onto and grips the beam by means of a threaded adjusting bar. Homemade beam clamps must not be allowed.

Beam clamps are designed for vertical lifts only. Do not subject them to side loading. Where some side loading is expected, use a beam clamp specially designed for side loading.

Beam clamps must be marked with the following information:
3 LIFTING ACCESSORIES

3.1 Slings

3.1.1 Wire Rope Slings

NOTE: SEE OFFSHORE CCUs IN LIFTED EQUIPMENT FOR SLING DESIGN REQUIREMENTS ON CCUs AND OTHER PRE-SLUNG LIFTED EQUIPMENT GOING OFFSHORE.

All wire rope slings must be manufactured in accordance with API RP 2D and ASME B30.9, DNV•GL 2.7-1, EN 12079, and ABS Guide to Offshore Containers.

NOTE: The following slings are not allowed:
- Field-Fabricated slings
- Non-Flemished eyes
- Aluminum turnback eyes
- Chain

3.1.2 Synthetic Slings

Slings must be designed and built in accordance with the latest edition of the Web Sling & Tie Down Association (WSTDA) specification, manufacturer’s guidelines, and industry standards (e.g. ASME B30.9).
- Slings must also be labeled legibly (marked with the working load, certification, and manufacture date).
- Design specifications for synthetic slings (e.g. fast rescue boats) are as follows:
 - Made of the continuous fiber-type construction
 - Have extra UV protection

3.1.3 Stinger Requirements

When a wire rope is used to extend the load block of a lifting appliance, it must:
- meet the wire rope sling requirements,
- have hard-eye terminations incorporating a hook at one end and a masterlink at the other, and
- have a positive locking latch (e.g. Crosby PL latch) when used for personnel transfer.

3.1.4 Forklift Attachments

Attachments for powered industrial trucks (PITs) (forklifts) will only be used with written permission from the PIT manufacturer. Permissions are available upon request.
3.2 Below-the Hook

3.2.1 Spreader Bars and Special Lifting Devices

All spreader bars and special lifting devices must:
- be designed per American Institute of Steel Construction (AISC), API RP 2A, and Shell UAD-101-068 (or later version of similar document and
- comply with ASME B30.20 Below-the-Hook Lifting Devices.

In addition, verify the following:
- Certification paperwork is on-site; If no certification is available, the device must be certified by a licensed professional civil engineer.
- All padeye boreholes are smooth and perpendicular to the plate face.
- The working load limit is permanently marked or stamped on the bar or frame.

3.2.2 Plate Clamps

Plate clamps must comply with ASME B30.20 Below-The-Hook Lifting Devices.

3.2.3 Hooks

Except as noted immediately below, hooks must:
- be designed and manufactured in accordance with ASME B30.10,
- have a retainer (e.g. latch) to bridge the throat opening of the hook,
- be lockable as required by API RP 2D and ASME B30.23 when lifting personnel but may not be spring-loaded, scissor like hooks,
- be painted a high-visibility color (e.g. fluorescent orange) on offshore pedestal cranes, and
- be certified for a working load limit equal to or exceeding the equipment to which they are a part.

NOTE: Retainers are not required for hooks on certified chain sling assemblies used in onshore rig moves. Hooks without a retainer may be used in specific applications with chain attachments that are designed, rated, and certified for a specific application. The use of sorting hooks without retainers is restricted to pipe in situations where it is moved from a transport truck to the ground or very short distances with the lift maintained just above the ground.

3.2.4 Tension Load Cells

Tension load cells used on all Shell sites shall maintain a factor of safety of 5:1 of the minimum breaking load (MBL) to the safe working load (SWL) at all times.

Tension load cells shall be considered structural members and shall be designed as such per API 2C specifications and per Shell DEP 37.92.10.30-GEN. Offshore Pedestal-Mounted Cranes (Amendments/Supplements to API Specification 2C). Specifically, this means that tension load cell design shall account for off-board dynamic loading, side-lead, and off-lead forces per API 2C section 4.3. Onshore applications shall use the appropriate local controlling codes (ANSI, ASME, etc.) for crane appurtenance design or reference API 2C section 4.3 if no local codes are available.
3.3 Rigging Hardware

NOTE: SEE OFFSHORE CCUs IN LIFTED EQUIPMENT FOR SLING DESIGN REQUIREMENTS ON CCUs AND OTHER PRE-SLUNG LIFTED EQUIPMENT GOING OFFSHORE.

3.3.1 Masterlinks

Masterlinks must be drop-forged (preferred on sizes up to 2 1/4") or welded and only from the following Shell-accepted manufacturers (see note; list subject to change):
1. The Crosby Group for all Crosby models of masterlinks and sub-master link assemblies in sizes of 7/8" through 5". Crosby master and sub-master assemblies smaller than 7/8" will follow direction below.
2. Skookum brand master and sub-masterlink assemblies. All sizes.
3. Manufacturers with DNV•GL 2.7-1 type approved product

NOTE: In 2016 all sling master and sub-masterlink assemblies shall:
• Be from a Shell-accepted manufacturer as listed above or
• Provide tagging and documentation of NDE from a 3rd party inspection agency qualified to American Society for Nondestructive Testing (ASNT) level 2 or equivalent.

Starting January 1, 2017 all sling master and sub-masterlink assemblies shall be from a Shell-accepted manufacturer as listed above.

3.3.2 Shackles

NOTE: SEE OFFSHORE CCUs IN LIFTED EQUIPMENT FOR SLING DESIGN REQUIREMENTS ON CCUs AND OTHER PRE-SLUNG LIFTED EQUIPMENT GOING OFFSHORE.

All shackles must meet the requirements of the latest edition of ASME B30.26 and Federal Specification RR-C-271D.

Each shackle body and pin must be marked in raised and or stamped letters with the following information:
• Shackle body:
 • Manufacturer’s trademark or logo
 • Rated load
 • Size
 • Identification code (for material traceability)
• Shackle pin:
 • Manufacturer’s name or code
 • Identification code (for material traceability)
3.3.3 Eyebolts
Eyebolts must meet the requirements of ASME B30.26.

Eyebolts must be marked in raised or stamped letters with the following information:
- Manufacturer’s trademark or logo
- Size
- Rated load
- Identification code (for material traceability)

3.3.4 Turnbuckles
Turnbuckles must meet the requirements of ASME B30.26.

Turnbuckles must be marked in raised or stamped letters with the following information:
- Manufacturer’s trademark or logo
- Size
- Rated load
- Identification code (for material traceability)

3.3.5 Open-Wedge Sockets
Open-wedge sockets must meet the requirements of ASME B30.26.

Open-wedge sockets must be marked in raised or stamped letters with the following information:
- Manufacturer’s trademark or logo
- Size
- Model is required to match wedge to body
- Identification code (for material traceability)
- Terminator types are acceptable

3.3.6 Rigging Blocks
Rigging blocks must be built to ASME B30.26.

Rigging blocks must be marked in raised or stamped letters with the following information:
- Manufacturer’s trademark or logo
- Rope size(s)
- Rated load

A test certificate should be readily available.
4 LIFTED EQUIPMENT

4.1 Containers, Non-Tubulars, and Tote Tanks

4.1.1 General

All lifted equipment, at a minimum, will have lifting points designed/validated and certified by a licensed engineer.

4.1.2 Offshore CCU Requirements

All CCUs and lifting sets must be certified to industry standards DNV•GL 2.7-1, EN 12079, and ABS Guide for Offshore Containers by January 1, 2018. See OPS0055-PR02-TO.13 Table 1 for guidance on requirements until January 1, 2018.

Agencies approved to certify CCUs to industry standards specification are:
- DNV•GL,
- Lloyds Register,
- ABS and
- other agency approved in writing by Shell.

NOTES:

1. The list of approved certifying agencies is subject to change.
2. Lifting sets for CCUs shall be fully compliant with above standards, with the following not permitted:
 a. chain slings
 b. synthetic slings
 c. turnback eye splice/alloy crimp on sling ends
3. CCUs and lifts sets may be approved separately.
4. Certifications must accompany CCU and pre-slung equipment at terminal facilities.

4.1.3 Requirements for Lifted Equipment not Meeting CCU Requirements

For lifted equipment going offshore and not meeting the definition of a CCU, equipment must be:
- designed/validated and certified by a licensed engineer to meet the requirements of API RP2A section 5.4.2.3 Dynamic Load Factors and section 5.4.2.4 Allowable Stresses,
- documented with drawings, calculations, and Lifted Equipment Certification Form (OPS0055-PR02-TO.12) (formerly Appendix G) all:
 - stamped by a licensed engineer (Civil, Structural, or Mechanical) and
 - provided at terminal,
- manufactured in accordance with these stamped drawings,
- have lifting sets meeting DNV•GL 2.7-1 type approval by agencies and dates listed in 4.1.2, and
- padeyes that are smooth and perpendicular to the plate face.

NOTE: All collapsible, synthetic rope-type cargo nets and containers are prohibited except when used for vessel to vessel transfer.
4.1.4 Offshore Temporary Buildings

Offshore temporary buildings are required to follow all non-CCU certified design requirements of offshore containers. All contents and furnishings shall be accounted for in Maximum Gross Weight value as noted in OPS0055-PR02-TO.12 (formerly Appendix G). Nothing shall be loaded into temporary offshore buildings during transport and/or lifting that was not considered in original design.

See OPS0055-PR03 for specific testing requirements for temporary buildings.

4.1.5 Modifications

Any structural modification or repair will follow guidance of the industry standard for which it was manufactured.

Any structural modifications or repairs of non-CCUs and their padeyes are prohibited unless performed in accordance with revised and stamped drawings.

4.1.6 ISO Containers

- ISO shipping containers are not designed for dynamic lifts and must not be used in offshore operations.
- ISO blocks/connectors are not permitted for use as lifting attachment points for containers used in dynamic lifting.
- Approved lifting devices (e.g. Tandemloc systems) are required for ISO containers with contents in static/shorebase operations, and may not be offloaded at an offshore location. Multi-leg bridles forming a single point lift from the top are not permitted unless the container is empty and meets the requirements of ISO 3874 Table 4.

4.1.7 Stainless Steel (SS) IBC-Type Tote Tanks

SS IBC-type tote tanks shall meet requirements of non-CCUs in 4.1.3, including lifting sets.

Tote tanks shall have a protective means of keeping the slings from getting caught under the DOT-type lids. Example: DRP #102 from CAR Specialties, available through Redman.

ALL VALVE CAPS, PLUGS AND OTHER ANCILLIARY DEVICES (UNLESS THREADED OR MECHANICALLY CONNECTED), FOR ANY TANK SHALL BE TETHERED.

4.1.8 Bulk Bags

All bulk bags are to be designed, marked, constructed and tested in accordance with the latest edition of ISO 21898.
- All bags to be used in compactors shall, at minimum, meet the ISO 21898 definition of ‘single trip,’ including a marked reference to the ISO 21898 standard.
- For any other use or shipment, bulk bags shall meet the ISO 21898 definition of ‘heavy-duty, reusable’ and be marked as such.
- Any bulk bag that does not meet ISO 21898 standards should not be lifted and shall be removed from location.
PROCEDURE OPS0055-PR02
OPERATIONAL REQUIREMENTS

1 INTRODUCTION

1.1 Overview

1.1.1 Outline
This Procedure provides operational requirements for the following:
- Lift Planning
- Lifting Appliances
- Lifting Accessories
- Lifted Equipment

2 LIFT PLANNING

2.1 Overview

2.1.1 Assigning a Ultimate Work Authority
Each location will designate a person of suitable competence and qualification appointed by the company responsible for a site (e.g. a vessel, platform, a land location) to oversee and approve all lifting operations on this single location, on behalf of all personnel working on it. Examples include the Master of a Vessel or the Offshore Installation Manager (OIM) of a floating platform or the PIC over a fixed leg platform.

2.1.2 Assigning a Local Lifting Focal Point
Each field operating or drilling unit operating offshore pedestal-mounted cranes will designate 1 dedicated person in the field as the Local Lifting Focal Point (LLFP). For locations with Deck Supervisors, the Deck Supervisor will fill the LLFP role unless a full time LLFP is identified. For fixed leg locations the contract crane operator or full time LLFP will fill the LLFP role.

2.1.3 Assigning a Lift Sponsor
The UWA will assign a Lift Sponsor for all lifting and hoisting operations.

NOTE: The QO/QP may be assigned as the Lift Sponsor.

2.1.4 Lift Sponsor
When planning and executing lifting operations, the Lift Sponsor shall:
- use OPS0055-PR02-TO.01 Lift Categorization and Work Authorization Table,
- verify that the lift area(s) is:
 - controlled to verify that individuals are safeguarded from entering the path of the load and
 - adequately sized for the load’s size and weight,
- verify that the answers to OPS0055-PR02-TO.02 Lift Planning Flowchart and Tables are addressed in a Toolbox Talk,
- verify that applicable lift planning requirements in this Procedure are met,
- verify that the number of riggers needed for each lift has been adequately planned. (Blind lifts will always require a minimum of 2 riggers and a DSP. Other lift types may require more or fewer riggers due to lift complexities.), and
• verify that all “new type” or “not previously performed” lift plans are loaded into the OPS0055 Lift Plan repository.

2.1.5 Designated Lift Areas

Each offshore location will identify normal working lay down areas used for lifting and hoisting. These areas will be free of obstacles not including other loads in the area. All designated lift areas will be at least 3’ from any unguarded light pole, PA box, or other fragile equipment as well as any handrails not designed for impact. Standard platform handrails are not designed for impact. Any lift outside of the designated lift area GA will be classified as a critical lift and planned as such.

2.1.6 Planning the Lift

Lift planning shall be done minimally twice per operator shift or as operators change. Depending upon the amount of lifting to be performed more planning exercises might need to be performed. Only lifts identified in the planning session will be performed during operation session. All lifts other than routine will require specific lift planning see (OPS0055-PR02-TO.03 and OPS0055-PR02-TO.04). Multiple critical or complex/engineered lifts of similar nature may be incorporated in the same lift plan. For routine lifts an approved JSA is equivalent to a generic lift plan.

2.2 General Requirements

2.2.1 Register of Lifting Equipment

A register recording the following data shall be maintained for all lifting equipment:
• Manufacturer and description
• Identification number
• SWL
• Date when the equipment was first taken into use
• Particulars of defects and steps taken to remedy them
• Certificates with dates and numbers of tests, inspections, and examinations, and the name of person who performed these
• Due dates for previous and next periodic inspection or periodicity of inspections
• Maintenance log
• Current color scheme or color code process

NOTE: Each location will post the current color code at each crane, each bulletin board where QO’s are posted, and in all areas where rigging gear is stored.

2.2.2 Personnel Being Lifted

The Lift Sponsor shall communicate the following requirements:
• Personnel shall wear fall protection as required by HSE0044 Fall Prevention and Protection.
• Keep all parts of the body, tools, and equipment inside the work platform periphery during raising, lowering, and traveling.
• Personnel shall hold onto platform with both hands.
NOTES:

- Cranes being used for lifting or transfer of personnel must perform no other operation during the period of personnel lifting operations.
- Personnel lifts are considered critical and must only be conducted when the risk level is considered to be As Low As Reasonably Practical (ALARP).
- Blind lifts of personnel shall be minimized and shall not be permitted as repetitive operations. Blind personnel lifts require concurrence between the Ultimate Work Authority (per Safety and Environmental Management System [SEMS]) and the Operations Manager or Well Operation Team Lead.

2.2.3 Onshore Personnel Lifts

Must be conducted in accordance with the following when applicable:

- OSHA 29 CFR 1926.550
- OSHA 29 CFR 1910.67
- OSHA 29 CFR 1926.453
- ASME B30.23
- ASME B30.5-3.2.2

See OPS0055-TO.02 References and Companion Documents for titles of above regulations and standards.

2.2.4 Offshore Personnel Transfers

All personnel transfers must be conducted in accordance with OPS0168A General Requirements for All Personnel Transfers.

NOTE: Personnel lifts are considered critical and must only be conducted when the risk level is considered to be ALARP.

2.2.5 Blind Lifts

Lifts out of sight of the operator (QO/QP) are considered blind lifts and require:

- the Designated Signal Person (DSP) to communicate with the operator per OPS0055-PR02-TO.05 DW-GOM Crane Communications,
- a survey of the area to identify potential hang points and any special rigging needs, and
- clear radio communications when the DSP cannot see the operator.

NOTE: A boom tip camera must not be used in place of a DSP.
2.2.6 Extreme Environmental Conditions

Each location or organizational group must develop local requirements for conducting lifting and hoisting operations during extreme environmental conditions, such as:

- high winds,
- high seas,
- high noise areas (communications),
- snow and ice,
- electrical storms,
- poor visibility,
- unstable or sloping terrain, and
- snow and ice.

NOTE: When offloading boats, the UWA, Lift Sponsor, QO, and the Boat Captain shall be jointly responsible for determining if weather conditions are satisfactory. Wind limits shall be in MPH.

2.2.7 General Lifting

Prior to making the lift, the Lift Sponsor shall do the following:

- Establish communications with Rigger, DSP, and, where applicable, Boat Captain. Refer to OPS0055-PR02-TO.05 DW-GOM Crane Communications.
- Verify that tag lines meet the requirements in 3 Lifting Accessories.

2.2.8 Offshore Pedestal Cranes

Prior to making the lift, the Lift Sponsor shall do the following:

- Determine any interference caused by planned and scheduled helicopter flight operations, and re-plan or re-schedule crane operations as necessary (refer to helicopter operating procedures in OPS0055-PR02-TO.06 Crane Cab Decals).
- Verify that loads to be shipped meet DW-GOM pre-slinging and containerization requirements (refer to 5.3.3 and 5.3.6).

2.2.9 Aerial Platforms and Mobile Cranes

The Lift Sponsor shall survey the area to identify hazards and take precautions for:

- overhead obstructions,
- high-voltage conductors as defined by (OSHA 29 CFR 1910.333),
- debris, bumps and loose obstructions, drop-offs, holes, ditches, open earth fills, obstructed path of travel, and unstable footing, and
- underground utilities (gas, electricity, water).
3 LIFTING APPLIANCES

3.1 Overview

3.1.1 In this Section

This section identifies operational requirements specific to the following lifting appliances:
- Cranes, including:
 - Offshore pedestal
 - Articulating boom
 - Aerial platforms
 - Powered industrial trucks
- Hoists, including:
 - Manual lever
 - Chain
 - Jacks
 - Winches (including man-riding)
 - Beam clamps
 - Fixed lifting points
- Mobile
- Overhead
- Gin pole trucks
- Powered overhead

3.1.2 General Requirements

Locations and organizational groups with hurricane procedures must verify that these procedures include the following requirements:
- All lifting and hoisting equipment is secured to prevent damage.
- Before returning to service:
 - unsecure all lifting and hoisting equipment,
 - perform a complete visual inspection, and
 - reinstate utilities.

3.2 Offshore Pedestal Cranes

3.2.1 Prior to Starting the Crane

Before starting the crane the QO shall do the following:
- Verify that lift planning has been completed by the Lift Sponsor.
- Conduct and document the Offshore Pedestal Crane Pre-Use Inspection (refer to OPS0055-PR02-TO.07).
- Use weight indicators and refer to the shipping manifest to determine the weight of the load.
- Compare the weight on the manifest with the written weight and date on the load sticker to verify correctness.
- Each location will have an official High Angle Kick Out (HAKO) set point. This set point will be listed on the crane decal (refer to OPS0055-PR02-TO.06) and documented during the annual inspection performed by SCI.
- Follow the Pedestal Cranes Permitted Operations Matrix (refer to OPS0055-PR02-TO.06) for bypassing any safety device such as the boom kick-out or anti-two blocking device. Adjustment of the HAKO beyond the set point is
considered bypassing. Follow instructions on HAKO Adjustment decal in OPS0055-PR02-TO.06.

NOTE: DURING BYPASSING OF HAKO FOR CRITICAL LIFTS. AT NO TIME WILL THE BOOM BE ALLOWED TO TOUCH OR COMPRESS BACKSTOPS.

- Verify that the DSP and the correct number of riggers are in place per the lift plan.
- Verify that the DSP’s rigger certificate has a qualification endorsement.
- Wear a high-visibility vest.
- Verify that the DSP is wearing a high-visibility, mesh, reflective vest or hard hat cover that will clearly distinguish him/her from anyone else on the worksite.
- Adhere to any tags placed on crane.
- Verify that measures identified in the lift plan are in place to keep unauthorized personnel out of lift areas.

NOTE: Review any discrepancy found on pre-use inspection against the “Pedestal Cranes Permitted Operations” matrix found in OPS0055-PR02-TO.06 and posted in crane cab or at control station.

3.2.2 Load Handling

During lifting operations, the QO shall:
- be at the crane controls at all times while a load is suspended,
- unless adhering to blind lift requirements, verify that loads are kept in sight from time of pick up until the load and tag lines clear the deck,
- verify that all slings are positively attached to loads with a screw pin or anchor bolt type of shackle,
- verify that items within containers are secure and not overflowing or interfere with center of gravities
- verify that nothing is left on top or around un-secured on a load that would create a dropped object, and
- verify that tag lines are used in accordance with 4.4.6 Tag Lines.

During lifting operations, the QO shall not:
- hoist a load over personnel on any deck level,
- hoist loads directly over the deck of the boat to and from the platform, unless absolutely necessary to do so due to crane capacity or other circumstances,
- move loads while personnel are on the load (unless in an approved work basket),
- lift a load out of a container until all personnel are clear of the container,
- use a crane to drag loads unless it is rigged properly, and
- operate the crane while a helicopter is landing, taking off, or has rotors turning on the helideck.
- allow any part of the crane structure, wire, blocks, rigging, or load to come in contact or rub against any structure.
- hoist or park a load in proximity of exhaust flumes.
3.2.3 Shutting Down Lifting Operations

Before leaving the control station unattended, the QO shall:
- land any attached load with the exception of supporting wireline lubricators while on wellheads during wireline operations,
- park the boom away from flare stacks or engine exhausts,
- set all locking devices,
- secure the crane against swinging interference with helicopter or other crane operations, and
- stow unused high-visibility vests out of the view of the helicopter pilot.

NOTE: All lifting accessories, except those integral to the crane, will be removed before stowing the boom in the boom rest.

3.2.4 Crane Operations near Helidecks

Follow the crane/helicopter procedures on the decal shown in OPS0055-PR02-TO.06.

3.2.5 Lifting with Stingers

Stingers must:
- have a working load limit of at least 125% of the load to be lifted,
- be installed directly to the hoist hook unless integral to the block,
- be used during all off/on board material lifts,
- have a positive locking latch when using during personnel lifts (e.g. Crosby PL latch), and
- be hooked directly to the masterlink of sling-sets attached to pre-slung loads.

3.2.6 Emergency Procedures

Each offshore installation must develop crane and platform-specific methods and procedures for lowering a load in the event of crane malfunction (e.g. loss of power).

Cranes are equipped in accordance with API 2C for emergency lowering. This procedure shall be performed only by a trained/qualified person.
3.3 Mobile Cranes

3.3.1 Prior to Lift
The QO for mobile cranes shall:
- verify that lift planning has been completed by the Lift Sponsor,
- conduct and document the pre-use inspection,
- for critical lifts, verify that the load does not exceed 75% of the rated capacity of the crane,
- verify control of personnel in path of load,
- verify that the swing radius of the superstructure is barricaded to prevent unauthorized personnel from entering the area,
- obtain a Safe Work Permit approved by the UWA or above for bypassing the boom kick-out, and anti-two blocking or other safety devices,
- verify that weight indicators are available to validate the weight of the load, and
- appoint riggers to act as a load handler and a DSP, and
- verify that the DSP is wearing a high-visibility, mesh, reflective vest or hard hat cover that will clearly distinguish him/her from anyone else on the worksite.

NOTE: Mobile cranes will not be operated with nonfunctioning high angle kick-outs.

3.3.2 Load Handling
During lifting operations, the QO shall:
- be at the crane controls at all times while a load is suspended,
- unless adhering to blind lift requirements, verify that loads are kept in sight from time of pick up until the load and tag lines clear the deck, and
- verify that tag lines are used in accordance with 4.4.6 Tag Lines.

During lifting operations the QO shall not:
- hoist a load over personnel,
- move loads while personnel are on the load (unless in an approved personnel work basket),
- lift a load out of a container until all personnel are out and clear of the container, and
- use a crane to drag loads (unless it is rigged properly for a vertical pull).

On-site travel of fully rigged cranes, whether loaded or unloaded, shall only be carried out if permitted by the manufacturer and there is no reasonable alternative. Such crane movements shall be planned and supervised.

3.3.3 Shutting Down Lifting Operations
Before leaving the control station unattended, the QO shall:
- land any attached load,
- set all locking devices,
- secure the crane against uncontrolled travel or interference with other operations, and
- if applicable, put controls in the OFF or NEUTRAL position.

NOTE: Lifting accessories shall be removed when crane is not in use.
3.3.4 Lifting with Stingers

Stingers must:
- have a working load limit of at least 125% of the load to be lifted,
- be installed directly to the hoist hook unless integral to the block,
- be used during all off/on board material lifts,
- have a positive locking latch when using during personnel lifts (e.g. Crosby PL latch), and
- be hooked directly to the masterlink of sling-sets attached to pre-slung loads.

3.4 Gin Pole Trucks and Derricks

3.4.1 General Requirements

The QP shall:
- verify that lift planning has been completed by the Lift Sponsor,
- conduct a pre-use inspection,
- adhere to any tags placed on equipment, and
- appoint a DSP if required.

NOTE: These requirements do not apply to drilling derricks.

3.4.2 Load Handling

During lifting operations, the QP shall:
- be at the controls at all times while the load is suspended,
- verify that there is no sudden acceleration or deceleration of the moving load,
- verify, when loads approach the maximum rating, that the weight of the load is determined within ±10% before it is lifted, and
- take additional precautions when using rotation resistant ropes with a design factor < 5, but in no case < 3.5, as follows:
 - Appoint a DSP.
 - Conduct operations in a manner and at speeds that reduce dynamic effects.
 - Record lifts in inspection records.
 - Ascertain that the rope is in satisfactory condition both before and after lifting.
 More than one broken wire in any one layer is reason to consider not using the rope for such lifts.

3.5 Articulated Boom Cranes

3.5.1 General Requirements

The QP shall:
- verify that lift planning has been completed by the Lift Sponsor,
- conduct a pre-use inspection, and
- adhere to any tags placed on equipment.
3.5.2 Load Handling
During lifting operations, the QP shall:
• be at the controls at all times while the load is suspended,
• verify that there is no sudden acceleration or deceleration of the moving load,
• verify, when loads approach the maximum rating, that the weight of the load is determined within ±10% before it is lifted,
• verify that the crane is level and that, where necessary, the vehicle/carrier is blocked properly,
• verify that the stabilizers, if so equipped, are fully extended and set, and
• use blocking under stabilizers as needed.

3.6 Overhead Cranes (Including Gantry, Monorail, Underhung, Top-Running)

3.6.1 Prior to Starting the Crane
Before starting the crane, the QP shall:
• verify that lift planning has been completed by the Lift Sponsor,
• conduct an overhead crane pre-use inspection,
• adhere to any tags placed on the equipment, and
• appoint a DSP, if required.

3.6.2 Load Handling
QP for overhead cranes shall:
• adhere to crane load limits,
• be at the crane controls at all times while a load is suspended,
• verify that loads are kept in sight from time of pick up until the load and tag lines clear the deck,
• verify that the load is attached to the hook by means of slings or other suitable devices (the latch must be closed to secure loose slings), and
• verify that the hoist rope is not allowed to be wrapped around the load.

3.6.3 Shutting Down Lifting Operations
Before leaving the control station unattended, the QP shall:
• land any attached load,
• verify that the load block is positioned above head-level when the crane is not in use,
• secure the crane against uncontrolled travel or interference with other operations, and
• if applicable, put controls in the OFF or NEUTRAL position.
3.7 Aerial Platforms

3.7.1 UWA Requirements
Verify that:
- each proposed personnel lift is the least hazardous, most practical method for performing the work,
- only QOs operate personnel lifting devices, and
- all personnel lifting devices are within inspection and testing intervals.

3.7.2 Prior to Lift
The QO shall:
- verify that lift planning has been completed by the Lift Sponsor,
- perform all functions in an unloaded condition, including operation of limit switches and tilt alarm/shutoff,
- use ground control station (where possible, operate close to ground level when using the platform control station),
- conduct a pre-use inspection on the lifting device, and
- adhere to all tags placed on the controls.

3.8 Powered Industrial Trucks (PITs)

3.8.1 Prior to Lift
The QP shall:
- verify that lift planning has been completed by the Lift Sponsor,
- conduct a pre-use inspection,
- adhere to all tags placed on the hoist controls.

NOTE: PIT (forklifts) used for pipe handling shall be fitted with a pipe clamp to prevent pipes from inadvertently rolling off the forks.

3.9 Hoists, Jacks, and Winches

3.9.1 Operations
QP shall:
- verify that lift planning has been completed by the Lift Sponsor,
- conduct a pre-use inspection,
- for any winch suspected of overload refer to corrective action per OPS0055-PR03 Testing and Inspection Requirements.
- adhere to all tags placed on the hoist controls, and
- for hoist and winches, remain at the controls at all times while a load is suspended, and lower-off slowly to avoid dynamic loading.

3.9.2 Hoist Storage
Hoists must be stored in a dedicated area that is covered, dry, or otherwise protected from the environment.
3.9.3 Man-Riding Winches

In addition to the requirements above, the following must be met:

- **OPS0055-PR02-TO.08 Pre-Start Checklist for Man-Riding Operations** must be filled out completely by all personnel involved.
- Only dedicated man-riding winches that incorporate appropriate safety devices as per ANSI A10.22 must be used for man-riding. These winches must be clearly marked “Dedicated for Man-Riding” and never used for any other purpose.
- All safety devices must be checked before every man-riding operation.
- Radio communications must be used at all times.
- The lift sponsor shall verify that all rig operations in the area are shut down and locked out while man riding is carried out.
- A dedicated team, including the Lift Sponsor, QP, and person being lifted, must carry out the operation.
- The Lift Sponsor shall verify that no other operation that could interfere with the man riding is carried out.
- Prior to installing or using winches, the following must be in place:
 - Emergency means by which all winch motion can be brought to a halt effectively and rapidly.
 - No man riding shall be allowed if the winch operator does not have clear sight of the rider.
- A secondary fall protection device must be used, independent of the primary lifting mechanism.
- Each rig shall have a list of needed activities requiring access above the monkey board or below the floor approved by the Lifting and Hoisting Technical Authority and the Well Operations Manager.

3.10 Beam Clamps

3.10.1 Operations

The QP shall:

- conduct a pre-use inspection,
- adhere to all tags, and
- use only on structural beams that have been certified (designed, tested, and marked with a working load limit).

For use on an uncertified beam refer to **3.11 Fixed Lifting Points**.

Typical beam clamps are not designed for side loading. Where side loading is expected, use only beam clamps designed for side loading.
3.11 Fixed Lifting Points

3.11.1 Operations of Certified Lifting Points
- QP shall use the correct shackle size to avoid high stress due to point loading.
- Padeyes must be loaded in the plane of the padeye only.
- No side loading shall be applied unless the padeye is specifically designed for that purpose.

3.11.2 Operations of Uncertified Lifting Points
If a section of the installation or plant structure or other uncertified beam will be used for lifting purposes, then:
- obtain a Safe Work Permit and
- plan the lift in accordance with [OPS0055-PR02-TO.09 Structural/Piping Guideline Load Matrix].

NOTE: Consult with DW-GOM civil engineer prior to the lift if there is any uncertainty about the capacity of the fixed lifting point.

4 LIFTING ACCESSORIES

4.1 Overview

4.1.1 In this Section
Operational requirements for the following are covered in DW-GOM-approved rigger training:

<table>
<thead>
<tr>
<th>Accessory</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slings</td>
<td>• Wire rope</td>
</tr>
<tr>
<td></td>
<td>• Chain</td>
</tr>
<tr>
<td></td>
<td>• Synthetic slings (e.g. nylon web, poly-round, fiber rope)</td>
</tr>
<tr>
<td></td>
<td>• Stingers</td>
</tr>
<tr>
<td>Below-the-Hook Lifting Devices</td>
<td>• Proprietary lifting devices</td>
</tr>
<tr>
<td></td>
<td>• Spreader bars</td>
</tr>
<tr>
<td></td>
<td>• Plate clamps</td>
</tr>
<tr>
<td></td>
<td>• Pallet hooks</td>
</tr>
<tr>
<td>Rigging Hardware</td>
<td>• Masterlinks</td>
</tr>
<tr>
<td></td>
<td>• Shackles</td>
</tr>
<tr>
<td></td>
<td>• Eyebolts</td>
</tr>
<tr>
<td></td>
<td>• Turnbuckles</td>
</tr>
<tr>
<td></td>
<td>• Open wedge sockets</td>
</tr>
<tr>
<td></td>
<td>• Rigging blocks</td>
</tr>
<tr>
<td></td>
<td>• Hooks</td>
</tr>
</tbody>
</table>

All lifting accessories must be used in accordance with DW-GOM approved rigger training. Operational requirements in the following sections are included for emphasis.
4.2 Slings

4.2.1 Synthetic Slings

Synthetic slings (e.g. nylon web, poly-round, fiber rope) may only be used where:
- there is no practicable alternative, and
- wire rope could crush or damage unprotected loads (e.g. piping or equipment with specialized coatings, rotating components from machinery, fragile equipment).

During rare occasions where a synthetic sling is exposed to a dynamic/offboard lift, the lift must:
- be considered a critical lift and thus subject to additional requirements for job planning and operating practice, and
- use slings with a working load rating that is double the load being lifted (e.g. a 5-ton straight lift requires a sling with a 10-ton working load rating).

Synthetic slings must not be used when exposed to:
- sharp edges or rough surfaces,
- temperatures exceeding 194°F, and
- chemicals,
- or the load may rotate in the sling.

4.2.2 Wire Rope Slings

Wire rope slings are broken into two categories; pre-slung and general lifting.

Pre-slung slings are integral to pieces of equipment shipped to and from onshore and offshore locations. Pre-slung slings are part of the equipment owner’s lifting register. Certificates will be available upon request.

General lifting slings are a location’s stock and part of their lifting register.

General lifting wire rope slings shall be stored in an area where they will not be exposed to:
- water,
- extreme heat,
- corrosive fumes,
- liquid, and
- spray.

Slings shall not be stored on the deck. When not in use, slings shall be kept on a rack.
4.2.3 Chain Slings

Chain slings will be used only during onshore rig moves and wellhead installations when:
- approved for use by the UWA and
- rated and certified for the intended use.

4.2.4 Stingers

Refer to Offshore Pedestal Crane/Mobile Crane operational requirements.

4.3 Below-the-Hook

4.3.1 Spreader Bars and Special Lifting Devices

Spreader bars and special lifting devices are fabricated steel structures typically used to verify that rigging connected between the bar/frame and the load is vertical. Unlike a spreader bar, special lifting devices are engineered for specific lifting applications.

The QP shall be instructed in the use of the device by a designated person. Instructions should include but are not limited to the following:
- Application of the lifter to the load and adjustments, if any, that adapt the lifter to various sizes or kinds of loads
- Instructions for any special operations or precautions
- The manufacturer’s recommended operating procedures
- Store the lifter to protect it from damage
- Do not exceed the rated capacity of the lifter

4.3.2 Plate Clamps

The use of plate clamps is restricted to situations where the plate is being:
- removed from a racking system, or
- moved a short distance with the lift maintained just above the deck/ground.

Universal plate clamps can lift a plate from horizontal to vertical and vice versa but must not be used to transport plates horizontally.

NOTE: The preferred and safest method of handling plate is cutting a hole and shackling per Engineer’s specification.

4.3.3 Tension Load Cells

Side loading of tension load cells will be avoided at all times.

4.4 Rigging Hardware

4.4.1 Eyebolts

Eyebolts must only be used for local/on-skid maintenance activities (e.g. motor alignment, positioning).
4.4.2 Turnbuckles

Turnbuckles must only be used as part of a special lifting device.

4.4.3 Shackles

- Avoid angle and side loading to prevent a reduction in shackle capacity.
- Anchor bolt shackles shall be fitted with manufacturer-approved cotter keys or keepers.

4.4.4 Hooks

Hooks must only be used as an integral part of another lifting appliance/accessory.

4.4.5 Rigging Blocks

The load line multiplied by the block load factor must not exceed the rated load of the rigging block, as shown in the figure below.

4.4.6 Tag Lines

The use of tag lines and their design must be evaluated on all lifts for mobile and offshore pedestal crane operations except during tandem lifts of two cranes. Tangle-resistant tag lines must be used for load control. The use of non-tangle resistant tag lines should be minimized and will require the approval of the UWA.

Personnel must:
- verify that tag lines are of sufficient length, and
- attach tag lines to the load to be lifted, at the lowest engineered point of connection possible. The shackles should be a point of connection for tag lines only when unable to connect to the load itself. Connecting tag lines to slings should only be done as a last resort. If tag lines serve no use to the control of the load, then approval to abandon tag lines must come from the UWA.

See OPS0168A Glossary (Personnel Transfer Safety) for guidance regarding tag lines that are to be used during personnel transfer baskets/nets.

For all other lifts, tag lines must be:
- manufactured to a tangle resistant design,
- Dropped Objects Prevention Scheme (DROPS) compliant,
- a minimum of 6' below the bottom surface of the load,
- free of knots, and
- without or free of frayed ends.
5 LIFTED EQUIPMENT

5.1 Overview

5.1.1 In this Section

This section contains the following subsections:
- Miscellaneous
- Lifted Equipment Going Offshore

5.2 Miscellaneous

5.2.1 Stacking Loads

Do not double-stack loads unless they are designed for that purpose. Riggers shall not have to climb aboard stacked loads to unrig.

When planning to double stack loads, consider the following:
- Access to the container for connecting/disconnecting the crane hook
- Deck loading
- Stability of the double stack
- Potential damage to rigging

5.2.2 Shipping Manifest

All loads must have shipping manifests that include load descriptions and weights.

5.2.3 Lifting Requirements for Hoses

Use only a certified lifting arrangement (this may be either a proprietary handling aid or regular loose lifting gear, such as wire rope slings and shackles).

5.3 Lifted Equipment Going Offshore

5.3.1 Color-Coded Decals

For lifts of 3,000 lbs or more, shore-based personnel must select the appropriate color-coded decal from the table below.

<table>
<thead>
<tr>
<th>Weight Range</th>
<th>Color Codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,000 – 5,000</td>
<td>Green</td>
</tr>
<tr>
<td>5,001 – 15,000</td>
<td>Yellow</td>
</tr>
<tr>
<td>15,001 – and up</td>
<td>Red</td>
</tr>
</tbody>
</table>

NOTE: It is crucial that the weight on the decal match the weight obtained from the shore-based facility's certified weight indicator.

The decal must be completed by:
- entering the date and actual weight,
- affixing the decal to the load where it is clearly visible to load-handling
5.3.2 Pre-Shipping Inspection

Each lift must be visually inspected by a Qualified Rigging Inspector prior to loadout. An example of a Pre-Shipping Inspection Checklist can be found in OPS0055-PR02-TO.10.

5.3.3 Containerization

All loads going offshore must be placed in pre-slung CCUs except the following:
- Equipment identified by the Lifted Equipment Certification Exemption List (OPS0055-PR02-TO.11).
- Non-tubulars/tubulars too large to containerize
- Engineered equipment following OPS0055-PR02-TO.12 guidelines

5.3.4 Non-Tubulars and Lifting Frames

Non-tubulars too large to containerize and lifting frames must have:
- clearly identified lifting points capable of handling the total capacity of the load,
- lifting points designed/validated and certified by a licensed engineer to meet the requirements of API RP2A section 5.4.2.3 Dynamic Load Factors and section 5.4.2.4 Allowable Stresses, documented with drawings, calculations, and the Lifted Equipment Certification Form (OPS0055-PR02-TO.12) all stamped by a licensed engineer and available on request,
- manufacture in accordance with these stamped drawings, and
- padeye holes that are smooth and perpendicular to the plate face.

5.3.5 Tubulars

The following steps must be taken when handling tubulars:

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
</table>
| 1 | Confirm the following:
- The load capacity of the offshore crane
- That a certified spreader bar is available if applicable |
| 2 | Determine the appropriate size of the tubular racks, if applicable, to be used on the motor vessel. The racks should:
- contain each bundle within the upright stanchions of at least two racks and
- prevent movement during rough weather.
Leave slings wrapped around tubulars. |
| 3 | Verify that slings used for pre-slinging tubulars have a current certification. |
| 4 | Double-wrap tubulars on each end with a double-wrapped choker hitch using 3/4” x 30’ slings with a 12” soft eye on one end and a thimble eye on the other end. Pass the soft eye through the thimble eye to form the choke. |
| 5 | Secure the sling lifting eye and the tag line (if one is fitted) neatly to the same bundle of the tubulars on both ends. |
| 6 | Place a piece of 4’-6”, 4” nylon rope over each bundle to protect the slings from being crushed by additional bundles. |
| 7 | Verify that the height of the tubulars in the racks does not exceed 6’. |
| 8 | Once tubulars are offloaded, tag the slings as “Used”. |
| 9 | Return slings to shore base for visual inspection and possible reuse. |
5.3.6 Sling Requirements when Pre-Slinging

In addition to the requirements outlined in OPS0055-PR01 Design Requirements, slings must have:
- a certification/recertification date of less than 1 year, and
- sufficient length to prevent personnel from climbing or using ladders to hook or unhook loads. (This may require fitting a longer leg sling to the masterlink.)

Sling sets must also:
- achieve a 60° angle to the horizontal, with 45° being an absolute minimum,
- connect multi-leg slings to a masterlink (subassembly preferred),
- have thimbles on both ends of each sling, and
- have a bolt-type anchor shackle.

NOTES:
- Pre-slung slings that exceed their certification date while offshore can be used to ship the load to the terminal if:
 - the sling is inspected by a QP,
 - the sling is tagged with the following information:
 - inspection date,
 - QP’s name, and
 - QP’s signature, and
 - the load is manifested to indicate that the sling is out of certification and has been inspected by a QP.
- Removal of a sling and/or sling set used for pre-slinging for general lifting purposes is strictly prohibited.
- Equipment shipped one-way may be exempt from bolt-type anchor shackle and hard-eye (thimble) requirements. Screw pin shackles shall be moused (secured) with wire or tie wraps.

5.3.7 Lifting Requirements for Pallets

Pallets must be lifted by a PIT/forklift or certified pallet-lifting accessory such as a pallet fork when lifting overhead with a crane or general lifting appliance. Do not use any type of pallet as a lifting device (e.g. putting slings through wooden pallets to lift them and their contents is prohibited).

NOTE: All material must be secured to pallet when lifting overhead using crane or general lifting appliance.
5.3.8 Bulk Bags

In addition to the requirements outlined in OPS0055-PR01 Design Requirements, bulk bags shall be:

- utilized in a manner that is compliant with all manufacturer instructions printed on the tag.
- lifted one at a time and in accordance with printed manufacturer instructions on the tag.

Filled bulk bags are to be:
- transferred to and from the location in certified transporters and carriers only,
- used within the time and content restriction as dictated by the manufacturer and communicated through the tag, and
- protected from UV damage at all times while being stored.
Lift Categorization and Work Authorization Table

<table>
<thead>
<tr>
<th>Type of Lift</th>
<th>Description</th>
<th>JSA</th>
<th>WCC Permit</th>
<th>SWPL</th>
<th>Lift Plan - Specific</th>
<th>ENG</th>
<th>OM/WOT/LAO</th>
<th>SWT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Routine</td>
<td>Includes:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lifts with known weight, shape, and center of gravity</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lifts performed under calm environmental conditions</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lifts using standard rigging and lifting equipment with a single lifting appliance with ample headroom</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lifts inside designated lift area</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lifts involving marine operations of loading and unloading vessels</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Critical10</td>
<td>Includes:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lifts over or within 6 feet (1.8 meters) horizontally of active or energized hydrocarbon-containing process equipment³</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Personnel transfer</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Man-riding operations between the monkey board and the rig floor</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Man-riding operations above the monkey board or below rig floor⁴</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Lifts that expose a synthetic sling to dynamic, shock, or snatch conditions</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Loads outside designated lift areas</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Blind lifts</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lifts with unknown weight, center of gravity, or chance of being stuck</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lifts requiring special signals not part of standard hand signal chart</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Personnel lifts with the intent of performing work from a work basket⁵</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Operators in training at levels requiring supervision</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lifts using more than one lifting appliance, including handing off loads and tailing pipe to a rig</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Lifts into or out of confined spaces or shafts like hull columns</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lifts requiring bypass of safety devices</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Lifts beyond allowable wind conditions (MPH)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Complex / Engineered1</td>
<td>Includes:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lifts of expensive items, such as gas turbines when not using engineered lifting tools, one-of-a-kind articles, or major facility components whose loss would have a serious impact on production operations</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Lifts near overhead electrical power lines as defined by applicable regulations</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Type of Lift</td>
<td>Description</td>
<td>JSA</td>
<td>WCC Permit</td>
<td>SWPL</td>
<td>Lift Plan - Specific</td>
<td>ENG</td>
<td>OM/WOTL/AO</td>
<td>SWT</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>-----</td>
<td>------------</td>
<td>------</td>
<td>---------------------</td>
<td>-----</td>
<td>------------</td>
<td>-----</td>
</tr>
<tr>
<td>Lifts with awkward shapes, unbalanced weight, unknown/difficult to estimate weight, or center of gravity</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lifts with “special” non-standard rigging such as multiple sheave blocks or multiple spreader bars</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lifts to upend or lay down (turn vertically 90 degrees) an object with a crane</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lifts from un-certified lifting points outside the scope of OPS0055-PR02-TO.09</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temporary crane installation and foundation</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tandem lifts involving two cranes</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lifts using both falls of a crane</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temporary hoist foundation</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heavy (Engineered)</td>
<td>Lifts in excess of 90% of the maximum rated capacity of an offshore, pedestal-mounted crane.</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: Before proceeding with a heavy lift, a Shell SCI-written confirmation of the successful completion of a Heavy Lift Inspection must be obtained.

1. For offshore pedestal cranes, QO shall be a Level 2 Qualified Operator.
2. For personnel lifting involving aerial platforms, the Supervisor shall authorize, in writing, the use of the lifting appliance for each shift.
3. Does not apply to **onshore single well locations** where lifts are over or within 6 feet (1.8 meters) of the wellhead. Lifts made on multiple well locations or on locations covered by a Simultaneous Operations Plan (SIMOPs) require a WCC.
4. Riding above the monkey board or below the rig floor requires Shell Well Operations Team Lead (WOTL) or Well Operations Manager Approval. Rig Manager and Lead Shell Foremen will be considered Lift Sponsor and be in attendance at all times while riders are above the monkey board or below the rig floor.
5. Shell Drilling Foreman on duty.
7. For routine lifts, an approved JSA is equivalent to a generic lift plan.
8. For blind lifts that would otherwise, be categorized routine, the WCC can be waived and QO can be at current competency level. DSP must be QO level 1C minimally.
9. In lieu of WCC the DW-GOM Contractor Supervisor may delegate authorization to Drilling Foreman on duty.
10. QO can be at current competency levels.
11. Blind lifting of personnel will require concurrence between the UWA and the OM/WOTL/AO.

JSA – Job Safety Analysis per applicable Shell requirements
WCC – Work Control Certificate per ISSOW
SWPL – Safe Work Plan
UWA – Ultimate Work Authority as defined by SEMS
ENG – Engineering approval
OM/WOTL/AO – Operations Manager, Well Operations Team Lead, or Area Owner approval
SWT – Supervision Walk Through jobsite (shall be Shell Supervisor if on site, OIM/PIC or designee)
Lift Planning Flowchart and Tables

Introduction
Refer to the flowchart below and the tables on the following page to determine requirements when planning lifts.

Lift Sponsor Identified and Lifts Categorized

Routine Lift

Critical Lift

Yes

No

Otherwise Routine?

DSP > QO 1C?

Yes

No

Yes

No

Yes

No

WCC Written

JSA Written

Specific Lift Plan Written

SWT Required?

Area Walked by Supervisor

Yes

No

OMRS/AO Approval Required?

Yes

Approved

No

Complex/Engineered Lift

WCC Written

JSA Written

Specific Lift Plan Written

SWPL Required?

SWPL Written

Engineering Approval

OMRS/AO Approval Required?

Yes

Approved

No

SWT Performed

Tool Box Talk

Proceed with Lifting Operations
<table>
<thead>
<tr>
<th>Question</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Has the Lift Sponsor been identified?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Is everyone aware that a Toolbox Talk and JSA are necessary to make lifts?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Has the daily pre-use inspection been performed?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Have all safety devices been tested?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Is everyone involved certified for their individual jobs?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Does everyone understand the lifting and hoisting procedures applicable to the lifts to be made?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Have all lifting accessories been inspected, including color code and certification tags?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Have all signals been agreed upon?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Has the lift area been secured to keep non-lifting personnel out?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Are environmental conditions known and favorable within the local operating parameters?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Have the expectations and minimum requirements for Stop Work Authority been discussed?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Has the landing area been cleared of all unsecured obstacles and trip hazards?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Has a Designated Signal Person been identified and does everyone understand that with the exception of a STOP signal, signals will only be accepted from the DSP?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Yes answers to ALL of the questions below constitute a Routine Lift that can proceed with JSA.

Any NO answer to the questions below will require specific work authorizations in accordance with table in [OPS0055-PR02-TO.01](#).

HAS IT BEEN DETERMINED THAT:

- The lifts are to be lifted or landed in designated landing areas? CRT
- The load will be in the sight of the operator at all times? CRT
- All lifts are of known weights and centers of gravity? CRT
- No “special signals” will be needed? CRT
- No personnel transfer will take place? CRT
- No man-riding operations will take place? CRT
- No man-riding above the monkey board or below the rig floor will take place? CRT
- No personnel lifts in personnel baskets with the intent to perform work will take place? CRT
- There are no operators in training? CRT
- There are no lifts from uncertified lifting points or temporary mountings for hoists? ENG
- No lifts with “special” non-standard rigging (multiple sheave blocks, multiple spreader-bars, etc.) will be attempted? ENG
- No lifts will be over or within 6 feet (1.8 meters) horizontally of live hydrocarbon-containing process equipment? CRT
- There is only one lifting appliance being used for the lifts (including tailing pipe in drilling/workover or abandonment operations)? CRT
- There are no tandem lifts using two “cranes”? ENG
- There are no lifts using both blocks of a crane? ENG
- No lift will have to be upended or laid down (turned from horizontal 90 degrees or vice versa)? ENG
- No lift will expose a synthetic sling to dynamic, shock, or snatch conditions? CRT
- No lifts over 90% of the maximum capacity of the Offshore, pedestal-mounted crane will be attempted? HVL
- The load is free to be lifted and/or there is no chance of the load becoming hung up? CRT
- There are no lifts involving expensive items such as gas turbines, one of a kind items, or major facility components whose loss would have serious impact on production operations? CRT
- There are no lifts requiring bypass to safety devices (e.g. anti-two blocking or high angle kick-out devices) will be attempted? CRT

CRT – Critical Lift; ENG – Engineered Lift; HVL – Heavy Lift

The controlled version of this "Business Control Document" resides online. Printed copies are UNCONTROLLED.
Complex/Engineered Lift Plan

Lift Plan Category: Complex/Engineered (refer to OPS0055 PR02-TO.01 Lift Categorization and Work Authorization Table)

References

<table>
<thead>
<tr>
<th>Lift Plan no.</th>
<th>JSA no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>WCC no.</td>
<td>Safe Work Plan no.</td>
</tr>
</tbody>
</table>

Lift plan number is Date + sequential number of lift plans for that day. (example 01-15-2011-1)

Asset Location

<table>
<thead>
<tr>
<th>Lifting Appliances to be used</th>
<th>Position on location</th>
</tr>
</thead>
</table>

Yes Not Required Supervisor Name

Lift Sponsor Name

Supervisor walkthrough

- Yes
- Not Required

Lift location

Description of lifting operation

Load details/crane details

<table>
<thead>
<tr>
<th>Radius of lift</th>
<th>SWL at radii</th>
<th>Weather conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start:</td>
<td>Finish:</td>
<td>Wind (MPH):</td>
</tr>
</tbody>
</table>

Centre of gravity:
- Known
- Engineered
- Drawing

Load weight: Crane configuration:

Extra safety measures to be considered

- Lifts of expensive items, such as gas turbines, one-of-a-kind articles, or major facility components whose loss would have serious impact on production operations.
 - Follow engineering details on Safe Work Plan.
 - All special lifting devices reviewed by Engineer.
 - All special lifting devices certified and inspected per OPS0055
 - Consider increasing safety factors of lifting accessories.
 - Lifts near overhead electrical power lines as defined by applicable regulations.
 - Verify that the lift is allowed by local operating procedures
 - Reference local regulation documentation and attach to this lift plan.
 - Post extra watch person as needed
 - De-energize if possible

- Lifts with awkward shapes, unbalanced weight, unknown/difficult to estimate weight or center of gravity.
 - Follow Engineers instructions
 - Make sure weight indicator is correct and calibrated
 - Use dynamometer as necessary

- Lifts with “special non-standard rigging such multiple sheave blocks or multiple spreader bars.”
 - Follow Engineers instructions
 - All lifting devices certified and inspected per OPS0055

- Lifts to suspend or lay down (turn vertically 90 degrees) and object with a crane.
 - Follow Engineers instructions

- Lifts from uncertified lifting points outside of the scope of (OPS0055 PR02-TO.09) Structural Guideline Load Matrix.
 - Follow Engineers instructions
 - Perform NDE and Inspection per Engineers instructions
 - Use rigging accessories certified and inspected per OPS0055

- Temporary Crane installations
 - Follow Engineers instructions
 - Crane operators certified and assessed per OPS0055.
 - NDE performed per Engineers instruction
 - Inspections and load test performed per OPS0055 and API RP 2D
 - Load test pull points per Engineers instruction

- Tandem lifts involving two cranes
 - Follow Engineers instructions
 - Both crane operator fully level 2QO and assessed and experienced in tandem lifts.
 - DSP competent and experienced in tandem lifting with cranes.

- Lifts using both falls of one crane
 - Follow Engineers instructions
 - Both falls must be capable of carrying the full load.
 - Rigging certified and inspected per OPS0055
 - Temporary hold foundation
 - Follow Engineers instructions
 - Tie down performed per Engineers instruction.
 - NDE performed per Engineers instruction
RISK ASSESSMENT

Severity = low 1 - high 5

<table>
<thead>
<tr>
<th>Top 5 risks associated with lifts.</th>
<th>Severity</th>
<th>Mitigations associated with lifts.</th>
<th>Resultant Severity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*more risks may be added if applicable

Any further safety measures

Communications available:
- [] Primary (VHF)
- [] Secondary (hand signal)
- [] Other (specify):

Communication checks:
- [] Primary checked
- [] Secondary checked

Lifting equipment and accessories to be used (specify type, SWL, and configuration)

Step-by-step details of lifting operation (may be part of Safe Work Plan and attached if applicable)

Engineering Review

- Has an Engineering review been conducted? [] Yes (attach details) [] No
- Engineer/position
Sketches (may be part of Safe Work Plan and attached if applicable)

Sketch detailing the rigging-up of the lifting equipment and lifting accessories (optional) [Click here for instructions.]

Debrief and learning points *(did the lift go as planned or are changes to the lift plan required?)*

Responsibilities

<table>
<thead>
<tr>
<th>Role</th>
<th>Print name(s)</th>
<th>Signature(s)</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reviewing Engineer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lift Sponsor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Appliance Operator</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Designated Signal Person</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: This lift plan shall include a copy of the pre-use inspection and the most recent crane inspection reviewed for deficiencies.
OPS0055-PR02-TO.04 CRITICAL LIFT PLAN

<table>
<thead>
<tr>
<th>Lift type Description</th>
<th>References</th>
<th>Lift Plan no.</th>
<th>WCC no.</th>
<th>Drawings rel.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asset Location</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lifting Appliance to be used</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lift Sponsor Name</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supervisor walkthrough</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lift location</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Position on location</th>
<th>□ Yes</th>
<th>□ Not Required</th>
<th>Supervisor Name</th>
</tr>
</thead>
</table>

Load details/crane details

<table>
<thead>
<tr>
<th>Radius of lift:</th>
<th>SWL at radii</th>
<th>Weather conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start:</td>
<td>Finish:</td>
<td>Wind (MPH):</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Centre of gravity:</th>
<th>□ Known</th>
<th>□ Engineered</th>
<th>□ Drawing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load weight:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crane configuration:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Extra safety measures to be considered (tick as applicable and detail in 'step-by-step'). List is NOT INCLUSIVE.

- Lifts over or within 6’ of active or energized hydrocarbon containing equipment.
 - □ Is there another route to avoid going over or within the equipment?
 - □ If the load bumped the equipment is there any instrumentation or valves whose breakage would cause damage or release?
 - □ Performed extra thorough pre-use inspection on all equipment associated with this lift.
 - □ Instituted 10:1 safety factor on rigging equipment.
 - □ Is equipment energized?
 - □ Is the Production Operator present?
 - □ Is there adequate landing room?

- Personnel Transfer
 - □ Training required in OPS0168A performed
 - □ Pre-use inspection performed by Qualified Person.
 - □ PIC informed that transfer is taking place.
 - □ Adequate landing area on vessel.
 - **Additional checks in next section.**

- Normal man-riding operations (between monkey board and rig floor).
 - □ Pre-start checklist filled out.
 - □ All safety devices operational
 - □ Is the Shell Drilling Foreman present?

- Man-riding *Above* Monkey board or below Rig Floor.
 - □ Pre-start checklist filled out.
 - □ All safety devices operational
 - □ ADDITIONAL MANAGEMENT APROVAL OBTAINED
 - □ Are the Lead Shell Drilling Foreman and Rig Manager present?

- Lifts that expose a synthetic sling to dynamic shock or snatch conditions.
 - □ Pre-use inspection conducted?
 - □ Document reason for no practical alternative to wire rope slings.
 - □ Is within the 12-month manufacture requirement.
 - □ The working load limit is double the weight of the item to be lifted.

- Lifts outside of the designated lifting areas.
 - □ Document reason for lift to be landed outside of designated lifting area.
 - □ Landing area surveyed and all potential hazards identified
 - □ May be combined with energized hydrocarbon equipment documentation requirements.
 - □ Extra riggers added as needed to assist in handling

- Blind lifts
 - □ Follow blind lifting procedures in OPS0055-PR02 section 2.2.5
 - □ Operator and DSP survey area for potential hang points and other hazards.
 - □ Keep DSP in visual sight of the operator if at all possible
 - □ Lifts with unknown weight, center of gravity or chance of being stuck
 - □ Load indicator used to verify weight not to exceed capacity of lifting appliance.
 - □ Auxiliary devices introduced to free stuck object
 - □ If unable to easily determine the COG move to complex (engineered) lift.

- Lifts requiring special signals not part of the standard hand signal chart
 - □ Signals agreed upon in advance by the Appliance operator and the designated signal person.
 - □ Signals documented on lift plan

- Personnel lifts with the intent of performing work from a work basket or aerial platform.
 - □ Follow work basket procedures outlined in HSE0044
 - □ Extra attention to body parts outside of work basket during work operation.
 - □ All body parts tools and equipment inside work basket during raising, lowering or traveling.
 - □ Operator will not perform any other functions or operations during the period of personnel lifting operations.
 - □ Operator in training (see OPS0055-PR05)
 - □ Following the allowed lifts per competency section
 - □ Appropriate supervision per the competency section exercised.
 - □ Logging lifts as outlined in competency section.

- Lifts using more than one lifting appliance, including handing off loads and tailing pipe to a rig.
 - □ Is load rigged to prevent slippage during hand off?
 - □ Is each appliance capable of handling the load on its own?
 - □ Care for side loading of sheaves, blocks, trolleys etc...

- Lifts into or out of confined spaces or shafts like hull columns.
 - □ Extra care for blind lifting communications exercised.
 - □ Extra riggers in place in strategic areas.
 - □ Additional person in cab to help watch load indicator.

- Lifts requiring bypass of safety devices.
 - □ ADDITIONAL MANAGEMENT APROVAL OBTAINED
 - □ Qualified person to perform adjustment or bypassing additional personnel added to monitor

- Lifts beyond allowable wind conditions (MPH)
 - □ ADDITIONAL MANAGEMENT APROVAL OBTAINED
 - □ Crane operator comfortable with making the lift
 - □ Additional checks on swing brakes exercised

DW-GOM

<table>
<thead>
<tr>
<th>OPS0055</th>
<th>Page 52 of 116</th>
</tr>
</thead>
<tbody>
<tr>
<td>December 2016</td>
<td>Lifting and Hoisting</td>
</tr>
<tr>
<td>Rev 6.1</td>
<td></td>
</tr>
</tbody>
</table>

The controlled version of this “Business Control Document” resides online. Printed copies are UNCONTROLLED.
EQUIPMENT RISK ASSESSMENT

Severity = low 1 - 5 high

<table>
<thead>
<tr>
<th>Top 5 risks associated with lifts (e.g. needle valves on production equipment)</th>
<th>Severity (5)</th>
<th>Mitigations associated with lifts (e.g. extra riggers in place)</th>
<th>Resultant Severity (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

more risks may be added if applicable

Any further safety measures

- []

Communications available:

- [] Primary (VHF)
- [] Secondary (hand signal)
- [] Other (specify):

Communication checks:

- [] Primary checked
- [] Secondary checked

Lifting equipment and accessories to be used (specify type, SWL and configuration)

- []

Step-by-step details of lifting operation

- []

Engineering Review

Has an Engineering review been conducted?

- [] Yes (attach details)
- [] No

Engineer/position

The controlled version of this “Business Control Document” resides online. Printed copies are UNCONTROLLED.
Sketches

Sketch detailing the rigging-up of the lifting equipment and lifting accessories *(optional)*
[Click here for instructions.](#)

Debrief and learning points *(did the lift go as planned or are changes to the lift plan required?)*

<table>
<thead>
<tr>
<th>Lift Sponsor</th>
<th>Print name(s)</th>
<th>Signature(s)</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIC (For blind lifts that do not require a WCO)</td>
<td>Print name(s)</td>
<td>Signature(s)</td>
<td>Date</td>
</tr>
<tr>
<td>Appliance Operator</td>
<td>Print name(s)</td>
<td>Signature(s)</td>
<td>Date</td>
</tr>
<tr>
<td>Designated Signal Person</td>
<td>Print name(s)</td>
<td>Signature(s)</td>
<td>Date</td>
</tr>
</tbody>
</table>

NOTE: This lift plan shall include a copy of the pre-use inspection and the most recent crane inspection reviewed for deficiencies.
To attach your sketch file, click the **Comment** button on the top right side of the window as shown below.

Click the Attach File icon in the **Annotations** menu as shown below.

Move your insertion point (cursor) to the sketch field where you want your attachment icon to appear and click in that spot as shown below.

The details of your attachment will appear in the **Comments List** on the right side of the window as shown below.
TOOL OPS0055-PR02-TO.05

DW-GOM CRANE COMMUNICATIONS

General

Requirements

A communication method must be established prior to all lifting and hoisting operations.

Two-way radio communication is the preferred method.

Hand signals, as illustrated in this Tool, are an acceptable alternative method for lifting operations, except for blind lifts and offshore pedestal crane operations involving boats.

For blind lifts, two-way radio communication is mandatory.

For offshore pedestal crane operations involving boats:

- two-way radio communication is mandatory and
- radio communication with the boat captain and DSP on the boat must be maintained at all times.

If radio communications fail, lifting operations must cease until radio communications are re-established.

Radio Communications

Before Operations

The QP/QO must take the following steps:

- Ensure that radio communication is established.
- Ensure that the DSP understands and agrees to all radio signals.
- Preview all sight (blind) lifts with the DSP and all Riggers associated with the lift.

During Operations

The QP/QO must:

- never move a load if the signal is not understood,
- limit a radio signal to a single function (e.g. booming up vs. booming up and lifting up),
- use a dedicated radio frequency during all lifting operations,
- ensure that signals are discernable or audible at all times,
- ensure that the DSP gives directions to the QP/QO at least every 10 seconds, but does not keep microphone keyed constantly, and
- stop lifting operations immediately if communications are lost or anyone calls for a work stoppage. Work must not recommence until formal communication is re-established.
Crane Hand Signals

Posting

A weather-resistant copy of the standard hand-signal chart must be posted in an area where it can be easily found and read.

Offshore Pedestal Crane Hand Signals

Use the following hand signals for all offshore pedestal crane operations.

- **Heist:** With forearms vertical, forefinger pointing up, move hand in small horizontal circles.
- **Lower:** With arm extended downward, forefinger pointing down, move hand in small horizontal circles.
- **Move Slowly:** Use one hand to give any motion signal and place other hand motionless in front of hand giving the motion signal. (Heist Slow shown as example)
- **Raise Boom:** Arm extended, fingers closed, thumb pointing upward.
- **Lower Boom:** Arm extended, fingers closed, thumb pointing downward.
- **Swing:** Arm extended, point finger in direction of swing boom.
- **Emergency Stop:** Both arms extended, pointing down, move arms rapidly up and down.
- **Dog Everything:** Clasp hands in front of body.
Mobile Crane Hand Signals

Use the following hand signals for all mobile crane operations.

<table>
<thead>
<tr>
<th>Mobile Cranes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>HOIST. With forearm vertical, forefinger pointing up, move hand in small horizontal circle.</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>USE WHIP LINE. (Auxiliary Hoist) Tap elbow with one hand, then use regular signals.</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>MOVE SLOWLY. Use one hand to give any motion signal and place other hand motionless in front of hand giving the motion signal. (Hoist slowly shown as example.)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>SWING. Arm extended, point with finger in direction of swing of boom.</td>
</tr>
</tbody>
</table>

The controlled version of this "Business Control Document" resides online. Printed copies are UNCONTROLLED.
Mobile Cranes (Continued)

<table>
<thead>
<tr>
<th>TRAVEL</th>
<th>DOG EVERYTHING</th>
<th>TRAVEL</th>
<th>RETRACT BOOM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arm extended forward. Hand open and slightly raised. Make pushing motion in direction of travel.</td>
<td>Clasp hands in front of body.</td>
<td>Both fists in front of body, making a circular motion, about each other, indicating direction of travel, forward or backward. (For land cranes only.)</td>
<td>Both fists in front of body with thumbs pointing outward.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TRAVEL</th>
<th>EXTEND BOOM</th>
<th>RETRACT BOOM</th>
</tr>
</thead>
<tbody>
<tr>
<td>(One Track) Lock the track on side indicated by raised fist. Travel opposite track in direction indicated by circular motion of either fist, rotated vertically in front of body. (For land cranes only.)</td>
<td>(Telescoping Booms) Both fists in front of body with thumbs pointing outward.</td>
<td>(Telescoping Booms) Both fists in front of body with thumbs pointing toward each other.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EXTEND BOOM</th>
<th>RETRACT BOOM</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Telescoping Booms) One Hand Signal. One fist in front of chest with thumb tapping chest.</td>
<td>(Telescoping Booms) One Hand Signal. One fist in front of chest, thumb pointing outward and heel of fist tapping chest.</td>
</tr>
</tbody>
</table>
Use the following hand signals for all overhead crane operations.

<table>
<thead>
<tr>
<th>Overhead Cranes</th>
<th>HOIST. With forearm vertical forefinger pointing up, move hand in small horizontal circle.</th>
<th>LOWER. With arm extended downward, forefinger pointing down, move hand in small horizontal circle.</th>
<th>BRIDGE TRAVEL. Arm extended forward, hand open and slightly raised, make pushing motion in direction of travel.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TROLLEY TRAVEL. Palm up, fingers closed, thumb pointing in direction of motion, jerk hand horizontally.</td>
<td>STOP. Arm extended, palm down, move arm back and forth.</td>
<td>EMERGENCY STOP. Both arms extended, palms down, move arms back and forth.</td>
</tr>
<tr>
<td></td>
<td>MULTIPLE TROLLEYS. Hold up one finger for block marked “1” and two fingers for block marked “2”. Regular signals follow.</td>
<td>MOVE SLOWLY. Use one hand to give any motion signal and place other hand motionless in front of hand giving the motion signal. (Host slowly shown as example.)</td>
<td></td>
</tr>
</tbody>
</table>
Crane Cab Decals

Post the following decal in all offshore pedestal crane cabs or control stations.

![Crane Cab Decal]

OFFSHORE
CRANE/HELICOPTER OPERATING PROCEDURES
FOR CRANE OPERATORS

HELIICOPTER IN THE AREA
1. COMPLETE LIFT OPERATION OR LAY DOWN LOAD
2. BOOM AWAY FROM HELIPORT AND AWAY FROM THE APPROACH
 & DEPARTURE PATH OF THE HELICOPTER OR CRADLE BOOM
3. SECURE THE CRANE (Locks in place if boomed away) AND TURN
 ENGINE OFF (Rotating blue and amber lights must be off) FOR THE
 HELICOPTER TO LAND
4. EXIT CAB AND POSITION YOURSELF SO THAT YOU REMAIN IN
 VIEW OF THE HELICOPTER PILOT (High Visibility Green Vest Visible
 to the Pilot)

HELIICOPTER ON HELIDECK WITH BLADES TURNING
1. DO NOT START CRANE ENGINE OR OPERATIONS UNTIL
 HELICOPTER DEPARTS OR SHUTS DOWN (Helicopter rotors not
 turning)
2. ALWAYS CHECK HELIDECK ACTIVITY PRIOR TO STARTING CRANE
 ENGINE OR ANY MOVEMENT OF THE CRANE

PRIOR TO CRANE START-UP
ENSURE NO HELICOPTERS ARE INBOUND ON APPROACH TO LAND

QUESTIONS? CONTACT YOUR SUPERVISOR OR HSE TECHNICIAN

Read SEPCo's Crane & Lifting Standard OPS0055 and Safe Practice for
Helicopter Operations Manual OPS0081 Appendix J Expanded Procedures
Post the following decal in all offshore pedestal crane cabs or control stations.

Shell Upstream Americas Deepwater
Logistics Terminal Operations
Crane Load Color Code Program

I. GENERAL
A. Logistics Terminals or Shore Bases operated by or under the supervision of Shell UAD Terminal Operations are responsible for the safety of material loading and unloading onto and off of Marine Vessels.
B. Shell UAD Terminal Personnel will insure loads are properly marked and that the description and weight of all loads are entered on the load sheet when loading material onto a Marine Vessel.
C. In order for Offshore Crane Operators to easily identify the weight range of a single lift, Terminal personnel shall standardize single lift markings. A color code decal indicating the approx. weight range of the load will be affixed to each lift 1,000 lbs. or greater.

II. COLOR CODE DECALS
A. There will be five different decals with weight range from 1,000 lbs. and up. The indicated weight range will be printed across the top of the decal, and the words “Shell UAD” printed near the bottom.
B. Each weight range decal will have a highly visible color background corresponding to the following codes:

<table>
<thead>
<tr>
<th>Weight Range</th>
<th>Color Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,000 - 3,000 Lbs.</td>
<td>White</td>
</tr>
<tr>
<td>3,001 - 5,000 Lbs.</td>
<td>Green</td>
</tr>
<tr>
<td>5,001 - 15,000 Lbs.</td>
<td>Yellow</td>
</tr>
<tr>
<td>15,001 & up</td>
<td>Red</td>
</tr>
<tr>
<td>Heavy Lift Weight</td>
<td>Bright Orange</td>
</tr>
</tbody>
</table>

NOTE: Single lift loads are baskets, boxes, tanks, bottle racks, pallet boxes, bundled pipe etc.

C. The decals will be self adhesive and capable of withstanding the Marine environment.
D. The decals will be affixed to all single lift crane loads and be placed to be readily visible to the offshore crane operator or the rigger onboard the marine vessel.
E. Each Terminal/Sharebase will have a depiction of the color coded decals and weight ranges posted in the crane cab. The same information will also be posted in all offshore pedestal crane cabs or control stations.
F. Terminal Supervisors will select a common vendor to supply the decals to assure standardization in color, sizes and material.

III. OPERATIONS
A. The gross max. weight will be clearly and permanently marked on each lift per OPS 0055.
B. The actual weight markings will be placed on the appropriate decal by the Qualified Person weighing the load. The QP will include date and his/her initials on the decal before placing the decal onto the load.
C. Any single lift that is greater than 25,000 lbs. will not be loaded onto a Marine Vessel until proper authorization has been granted by the receiving location.

IV. DECAL REPLACEMENT AND/OR REMOVAL
A. Decals must be removed and/or replaced with the appropriate decal whenever the weight of the changes from one range to another, or from one actual weight to another.
B. All single lift loads, including those that have permanent visible affixed markings, must be decalled. Permanent weight markings must be verified prior to loading onto a Marine Vessel.
Permitted Operations

Post the following decal in all offshore pedestal crane cabs or control stations.

PEDESTAL CRANES PERMITTED OPERATIONS

<table>
<thead>
<tr>
<th>Condition</th>
<th>X</th>
<th>X</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Angle Kick Out Inoperable</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anti-Two Block Inoperable</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Boom Pawl Inoperable</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Load Moment Indicator</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Helicopter Warning Lights</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Hook Safety Latches</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Helicopter/Weight Stickers</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Boom Angle/Radius Indicator</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Boom Tip Camera Inoperable</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Instruments (gouges etc.)</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Wedge Socket/End Fitting</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Sheaves</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Bearings</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Corrugation</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Hook Deformation</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Oil Leakage</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Winch</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Engine</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Swing Drives</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Hose or Fitting</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Wire Rope</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Deformation</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Broken Wires</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Lost Certification</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Improper Spooling</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Winch Brakes Slipping</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Swing Brakes Slipping</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Control or Joystick Problems</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Electrical Swivel</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Emergency Shutdown</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Unidentifiable Noises</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Winds</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>>25 Shelf Boxed Boom</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>>30 Shelf/Spar Lattice Boom</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>>35 TLP Lattice Boom</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Structural Damage***</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

NOTE: Winds are measured in MPH.

The controlled version of this “Business Control Document” resides online. Printed copies are UNCONTROLLED.
Post the following decal in all offshore pedestal crane cabs or control stations.

ATTENTION!
THIS CRANE’S HIGH ANGLE KICK-OUT IS SET AT: ___°/____’ radius

The official HAKO angle is set and checked by the Shell Specialist Crane Inspector on the annual inspection. Adjusting this safety device constitutes a by-pass requiring a Critical Lift Plan, WCC and following official platform safety system by-pass process and logging. HAKO WILL be checked as part of the Pre-use inspection. IF HAKO is not found to trip at this set point it will require the crane to be taken out of service and proper maintenance supervision notified.

REV 3.1 OPS 0055
Pedestal Crane Inspection Form

Introduction

Refer to the chart below to complete the pedestal crane Pre-Use Inspection Form.
DW-GOM Daily/Pre-Use Inspection Form

Date: (Month/Year)
Location:
Crane Make:
Model:
Serial No:

| DATE/TIME |
|-----------|-------------------|
| 1. **FLUID LEVELS** |
| Engine oil |
| Coolant level |
| Hydraulic reservoir |
| Fuel oil |
| Ball ring lubricant level (if applicable) |
| 2. **CONTROL MECHANISMS** |
| Hoists |
| Hoses |
| Control valves |
| 3. **EXCESSIVE LEAKAGE** |
| Hoists |
| Hoses |
| Control valves |
| 4. **SAFETY DEVICES** |
| Anti-two blocking system |
| High angle kick-out device |
| Boom hoist pawl |
| Helicopter warning lights |
| Hook latches |
| 5. **VISUAL OF BOOM FOR DAMAGE** |
| Chords |
| Lacings |
| 6. **CORRECT LOAD CHART VERIFIED** |
| Auxiliary hoist |
| Main hoist |
| Boom hoist |
| 7. **WIRE ROPE DAMAGE OR IMPROPER REEVING** |
| Auxiliary dead end |
| Main hoist dead end |
| Boom hoist dead end |
| Boom connector pins |
| 8. **LOOSE, MISSING, CORRODED BOLTS, KEEPER OR COTTER PINS** |
| Auxiliary dead end |
| Main hoist dead end |
| Boom hoist dead end |
| Boom connector pins |
| 9. **RIGGING TO BE USED** |
| Slings |
| Shackles |
| 10. **DESIGNATED SIGNAL PERSON ASSIGNED** |
| Assigned |
| Tasks discussed |
| Radio communication established |
| 11. **LIFT RISK CHAR. w/WORK AUTHORIZATION** |
| 12. **JSA, TBT INCLUDING QUESTIONS for a SAFE LIFT** |
| **HOURS** |
| **CUMULATIVE HOURS** |

- Pre-use inspection will be performed daily, when operated, by the first Operator and when Operators change. (Maintenance personnel are also required to perform pre-use inspections before operating)
- Operators must initial each box as appropriate; write N/A when not applicable and I/O when inoperable.
- Operators must sign and record the date, a brief description of work performed, any personnel lifts, and or any deficiencies found on reverse side of inspection form. Use more than one line if needed.
- A new inspection checklist should be started as columns are filled up, no entry needed for days of non-operation.
- Inspection items should be included but not limited to above.
- Operators are expected to climb up to access platform on gantry for inspection of sheaves, wire rope and boom hoist termination.
- TBT = Toolbox talk
<table>
<thead>
<tr>
<th>Operator</th>
<th>Date</th>
<th>Pre-Use Insp.</th>
<th>Time Start</th>
<th>Time Stop</th>
<th>Lifts</th>
<th>Down Time</th>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td>C</td>
<td>CX</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Inspection: T = Tour; I = Inter-tower (refer to OPS0055)
Lifts: R = Routine; C = Critical; CX = Complex/Engineered; H = Heavy
Down Time in hours: R = Rig; P = Production; C = Crane only; N/A = Blank
Events: Any issue or activity beyond normal operations.
Checklist

All personnel involved in the man-riding operation will be involved in the completion of this list.

<table>
<thead>
<tr>
<th>START CRITERIA</th>
<th>OK</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Has a work permit/Work Control Certificate been obtained?</td>
<td>✗</td>
</tr>
<tr>
<td>2. Have the reason for man riding and the job objectives been explained and clearly understood?</td>
<td>✗</td>
</tr>
<tr>
<td>3. Verify that the passenger has agreed and understands that the ride is voluntary.</td>
<td>✗</td>
</tr>
<tr>
<td>4. Verify that weather conditions are within the locations limits.</td>
<td>✗</td>
</tr>
<tr>
<td>5. Does emergency means exist by which all motion can be effectively and rapidly brought to a halt?</td>
<td>✗</td>
</tr>
<tr>
<td>6. Is the winch cable fit for operation and spooled correctly, and is the certification relevant and up to date?</td>
<td>✗</td>
</tr>
<tr>
<td>7. Has the dedicated team including the Rig Manager and the Shell Drilling Foreman been identified?</td>
<td>✗</td>
</tr>
<tr>
<td>8. Have all rig operations within the derrick been suspended and controls locked out?</td>
<td>✗</td>
</tr>
<tr>
<td>9. Have all personnel reviewed the risk assessment and the company procedure for man riding?</td>
<td>✗</td>
</tr>
<tr>
<td>10. Has a toolbox talk with all persons involved in the task been completed?</td>
<td>✗</td>
</tr>
<tr>
<td>11. Has the emergency escape and rescue plan been completed and put in place?</td>
<td>✗</td>
</tr>
<tr>
<td>12. Have all activities in the area of the man-riding task that may have interfered been stopped?</td>
<td>✗</td>
</tr>
<tr>
<td>13. Has the operator been Shell-qualified per OPS0055 “Man-Rider Winch Operation”?</td>
<td>✗</td>
</tr>
<tr>
<td>14. Are radio’s available and checked for operation?</td>
<td>✗</td>
</tr>
<tr>
<td>15. Is the required secondary fall restraint system in place?</td>
<td>✗</td>
</tr>
<tr>
<td>16. Have hand signals been agreed upon by all involved?</td>
<td>✗</td>
</tr>
<tr>
<td>17. Has the “no signal-no movement” principal been agreed upon by all involved?</td>
<td>✗</td>
</tr>
<tr>
<td>18. Are the harness and connectors in good condition and fit for operation with relevant current certification?</td>
<td>✗</td>
</tr>
<tr>
<td>19. Is the harness inspection checklist filled out?</td>
<td>✗</td>
</tr>
<tr>
<td>20. Has the harness been adjusted properly for comfort?</td>
<td>✗</td>
</tr>
<tr>
<td>21. Is the correct PPE, complete with hard had and chin strap secured, being worn?</td>
<td>✗</td>
</tr>
<tr>
<td>22. Is the winch line fitted to the harness directly without the use of hooks?</td>
<td>✗</td>
</tr>
<tr>
<td>23. Is the winch marked for “Man Riding only” and certification up to date?</td>
<td>✗</td>
</tr>
<tr>
<td>24. Verify there is enough wire on the hoist to maintain five wraps on the last layer.</td>
<td>✗</td>
</tr>
<tr>
<td>25. Is the area above clear, or if not have any possible obstructions been removed or tied back?</td>
<td>✗</td>
</tr>
<tr>
<td>26. Are all safety devices in place and in accordance with Manufacturer’s and Shell’s requirements?</td>
<td>✗</td>
</tr>
<tr>
<td>27. Have all safety devices been tested including but not limited to:</td>
<td>✗</td>
</tr>
<tr>
<td>1. Upper and lower limits</td>
<td>✗</td>
</tr>
<tr>
<td>2. Line pull limiter</td>
<td>✗</td>
</tr>
<tr>
<td>3. Slack line shutdowns</td>
<td>✗</td>
</tr>
<tr>
<td>28. Have the hand tools been checked and are they fit for purpose?</td>
<td>✗</td>
</tr>
<tr>
<td>29. Are the hand tools secured with a lanyard correctly per the “DROPS” program?</td>
<td>✗</td>
</tr>
<tr>
<td>30. Have all loose articles been removed from the person who is to go aloft?</td>
<td>✗</td>
</tr>
<tr>
<td>31. Is the task for riding above the monkey board or below the rig floor on the approved list?</td>
<td>✗</td>
</tr>
<tr>
<td>32. Has the winch been inspected by a Qualified Person and free of defects?</td>
<td>✗</td>
</tr>
<tr>
<td>33. Verify that pre-use inspection for the man-riding winch has been performed by a Qualified Person?</td>
<td>✗</td>
</tr>
</tbody>
</table>

Persons man riding will be in the sight of the operator at all times.

Man riding above the monkey board or below the rig floor requires Shell Rig Superintendent Approval.

Operator: ___________________________ Signature: ___________________________

Rider: ___________________________ Signature: ___________________________

Rig Manager: __________________ Signature: __________________

Shell Drilling Foreman: __________________ Signature: __________________

Shell Rig Superintendent: __________________ Signature/e-mail approval: __________________
Structural/Piping Guideline Load Matrix

Overview

Use the Guideline Load Matrix in conjunction with the relevant load diagram, which indicates the method of support for the rigging.

The use of this table is for general guidance only. It is intended to provide guidance to field personnel to make small, occasional lifts up to 5,000 lbs. For lifts over 5,000 lbs., contact DW-GOM Civil Engineering for assistance.

All proposed members being considered support members must be visually examined for signs of deterioration (especially at the end connections) and deformation. Additionally, the proposed support member shall be examined for the existence of other loads already supported by the member in question. If any of the above conditions exist, contact DW-GOM Civil Engineering for assistance.
The table below provides guidance for anchor points of lifting devices. The members selected were the lightest-weight members in their group. For example, the W12 selected is a W12x14, the lightest W12. The heaviest W12 is a W12x190. A W12x190 can hold a considerable amount more than what is listed here. If a question arises on a specific case, consult DW-GOM Civil Engineering.

<table>
<thead>
<tr>
<th>Member</th>
<th>Span (L) (feet)</th>
<th>Allowable Midspan load Fig 1 (pounds)</th>
<th>Allowable Cantilever Load Fig 2 and 3 (pounds)</th>
<th>Allowable Tension Load Fig 4 (pounds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L 3x3</td>
<td>2</td>
<td>750</td>
<td>150</td>
<td>5000</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>300</td>
<td>50</td>
<td>5000</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>150</td>
<td>0</td>
<td>5000</td>
</tr>
<tr>
<td>L4x4</td>
<td>2</td>
<td>1800</td>
<td>450</td>
<td>5000</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>700</td>
<td>150</td>
<td>5000</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>350</td>
<td>50</td>
<td>5000</td>
</tr>
<tr>
<td>L5x5</td>
<td>2</td>
<td>3550</td>
<td>850</td>
<td>5000</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1400</td>
<td>350</td>
<td>5000</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>700</td>
<td>150</td>
<td>5000</td>
</tr>
<tr>
<td>L6x6</td>
<td>2</td>
<td>5000</td>
<td>1250</td>
<td>5000</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>2050</td>
<td>500</td>
<td>5000</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1000</td>
<td>250</td>
<td>5000</td>
</tr>
<tr>
<td>C4</td>
<td>2</td>
<td>3350</td>
<td>800</td>
<td>3339</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1350</td>
<td>300</td>
<td>3339</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>650</td>
<td>150</td>
<td>3339</td>
</tr>
<tr>
<td>C6</td>
<td>2</td>
<td>5000</td>
<td>1900</td>
<td>5000</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>5000</td>
<td>750</td>
<td>5000</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1500</td>
<td>350</td>
<td>5000</td>
</tr>
<tr>
<td>C8</td>
<td>2</td>
<td>5000</td>
<td>3550</td>
<td>5000</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>5000</td>
<td>1400</td>
<td>5000</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>2800</td>
<td>700</td>
<td>5000</td>
</tr>
<tr>
<td>C10</td>
<td>2</td>
<td>5000</td>
<td>5000</td>
<td>5000</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>5000</td>
<td>2350</td>
<td>5000</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>4700</td>
<td>1150</td>
<td>5000</td>
</tr>
<tr>
<td>C12</td>
<td>2</td>
<td>5000</td>
<td>5000</td>
<td>5000</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>5000</td>
<td>3750</td>
<td>5000</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>5000</td>
<td>1850</td>
<td>5000</td>
</tr>
<tr>
<td>Member</td>
<td>Span (L) (feet)</td>
<td>Allowable Midspan load Fig 1 (pounds)</td>
<td>Allowable Cantilever Load Fig 2 and 3 (pounds)</td>
<td>Allowable Tension Load Fig 4 (pounds)</td>
</tr>
<tr>
<td>---------</td>
<td>----------------</td>
<td>-------------------------------------</td>
<td>---</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>W4</td>
<td>2</td>
<td>5000</td>
<td>2350</td>
<td>5000</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>3800</td>
<td>950</td>
<td>5000</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1900</td>
<td>450</td>
<td>5000</td>
</tr>
<tr>
<td>W6</td>
<td>2</td>
<td>5000</td>
<td>2400</td>
<td>5000</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>3850</td>
<td>950</td>
<td>5000</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1900</td>
<td>450</td>
<td>5000</td>
</tr>
<tr>
<td>W8</td>
<td>2</td>
<td>5000</td>
<td>3400</td>
<td>5000</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>5000</td>
<td>1350</td>
<td>5000</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>2700</td>
<td>650</td>
<td>5000</td>
</tr>
<tr>
<td>W10</td>
<td>2</td>
<td>5000</td>
<td>4750</td>
<td>5000</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>5000</td>
<td>1900</td>
<td>5000</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>3800</td>
<td>950</td>
<td>5000</td>
</tr>
<tr>
<td>W12</td>
<td>2</td>
<td>5000</td>
<td>5000</td>
<td>5000</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>5000</td>
<td>2600</td>
<td>5000</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>5000</td>
<td>1300</td>
<td>5000</td>
</tr>
<tr>
<td>W14</td>
<td>2</td>
<td>5000</td>
<td>5000</td>
<td>5000</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>5000</td>
<td>5000</td>
<td>5000</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>5000</td>
<td>2500</td>
<td>5000</td>
</tr>
<tr>
<td>W16</td>
<td>2</td>
<td>5000</td>
<td>5000</td>
<td>5000</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>5000</td>
<td>5000</td>
<td>5000</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>5000</td>
<td>3350</td>
<td>5000</td>
</tr>
<tr>
<td>W18</td>
<td>2</td>
<td>5000</td>
<td>5000</td>
<td>5000</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>5000</td>
<td>5000</td>
<td>5000</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>5000</td>
<td>5000</td>
<td>5000</td>
</tr>
<tr>
<td>TS 2x2</td>
<td>2</td>
<td>5000</td>
<td>250</td>
<td>2667</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>5000</td>
<td>100</td>
<td>2667</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>5000</td>
<td>50</td>
<td>2667</td>
</tr>
<tr>
<td>TS 3x3</td>
<td>2</td>
<td>3000</td>
<td>750</td>
<td>4242</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1200</td>
<td>300</td>
<td>4242</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>600</td>
<td>150</td>
<td>4242</td>
</tr>
<tr>
<td>TS 4x4</td>
<td>2</td>
<td>5000</td>
<td>1400</td>
<td>5000</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>2300</td>
<td>550</td>
<td>5000</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1150</td>
<td>250</td>
<td>5000</td>
</tr>
<tr>
<td>TS 5x5</td>
<td>2</td>
<td>5000</td>
<td>2300</td>
<td>5000</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>3750</td>
<td>900</td>
<td>5000</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1850</td>
<td>450</td>
<td>5000</td>
</tr>
<tr>
<td>Member</td>
<td>Span (L) (feet)</td>
<td>Allowable Midspan Load Fig 1 (pounds)</td>
<td>Allowable Cantilever Load Fig 2 and 3 (pounds)</td>
<td>Allowable Tension Load Fig 4 (pounds)</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>---------------------------------------</td>
<td>---</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>TS 6x6</td>
<td>2</td>
<td>5000</td>
<td>3450</td>
<td>5000</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>5000</td>
<td>1350</td>
<td>5000</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>2750</td>
<td>650</td>
<td>5000</td>
</tr>
<tr>
<td>TS 8x8</td>
<td>2</td>
<td>5000</td>
<td>5000</td>
<td>5000</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>5000</td>
<td>2550</td>
<td>5000</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>5000</td>
<td>1250</td>
<td>5000</td>
</tr>
<tr>
<td>TS 10x10</td>
<td>2</td>
<td>5000</td>
<td>5000</td>
<td>5000</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>5000</td>
<td>4050</td>
<td>5000</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>5000</td>
<td>2000</td>
<td>5000</td>
</tr>
<tr>
<td>TS 12x12</td>
<td>2</td>
<td>5000</td>
<td>5000</td>
<td>5000</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>5000</td>
<td>5000</td>
<td>5000</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>5000</td>
<td>2950</td>
<td>5000</td>
</tr>
<tr>
<td>2" SCHD 40</td>
<td>2</td>
<td>950</td>
<td>200</td>
<td>2247</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>350</td>
<td>50</td>
<td>2247</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>150</td>
<td>0</td>
<td>2247</td>
</tr>
<tr>
<td>3" SCHD 40</td>
<td>2</td>
<td>3000</td>
<td>750</td>
<td>4683</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1200</td>
<td>300</td>
<td>4683</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>600</td>
<td>150</td>
<td>4683</td>
</tr>
<tr>
<td>4" SCHD 40</td>
<td>2</td>
<td>5000</td>
<td>1400</td>
<td>5000</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>2200</td>
<td>550</td>
<td>5000</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1100</td>
<td>250</td>
<td>5000</td>
</tr>
<tr>
<td>5" SCHD 40</td>
<td>2</td>
<td>5000</td>
<td>2350</td>
<td>5000</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>3800</td>
<td>950</td>
<td>5000</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1900</td>
<td>450</td>
<td>5000</td>
</tr>
<tr>
<td>6" SCHD 40</td>
<td>2</td>
<td>5000</td>
<td>3700</td>
<td>5000</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>5000</td>
<td>1450</td>
<td>5000</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>2950</td>
<td>700</td>
<td>5000</td>
</tr>
<tr>
<td>8" SCHD 40</td>
<td>2</td>
<td>5000</td>
<td>5000</td>
<td>5000</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>5000</td>
<td>2900</td>
<td>5000</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>5000</td>
<td>1450</td>
<td>5000</td>
</tr>
<tr>
<td>10" SCHD 40</td>
<td>2</td>
<td>5000</td>
<td>5000</td>
<td>5000</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>5000</td>
<td>5000</td>
<td>5000</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>5000</td>
<td>2600</td>
<td>5000</td>
</tr>
<tr>
<td>12" SCHD 40</td>
<td>2</td>
<td>5000</td>
<td>5000</td>
<td>5000</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>5000</td>
<td>5000</td>
<td>5000</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>5000</td>
<td>3800</td>
<td>5000</td>
</tr>
</tbody>
</table>
Loading Diagrams

Intercostal Member – Horizontal

LOADING MID SPAN

SUPPORT MEMBER

SPAN (L)
Cantilever Member – Horizontal
Cantilever Member – Vertical
Tension Member – Vertical
Pre-Shipping Inspection Checklist

SHACKLES
1. Are cotter pins or manufacturer-approved equivalent securing devices in place? If pins are too long cut and/or bend them. (Screw pin shackles are acceptable for one-way pre-slinging.)
 - Y []
 - N []
2. Are the shackles USA or equivalent?
 - Y []
 - N []
3. Is there any wear and tear on shackles?
 - Y []
 - N []
4. Are the shackles deeply rusted?
 - Y []
 - N []
5. Are there any cracks or deformation on the shackle?
 - Y []
 - N []
6. Is each shackle body marked in raised or stamped letters with the manufacturer’s trademark or logo, rated load, and size?
 - Y []
 - N []
7. Is there any risk of getting injured by the cotter pins?
 - Y []
 - N []

CERTIFICATION TAGS ON PRE-SLUNG SLINGS
1. Is the tag readable?
 - Y []
 - N []
2. Is the weight capacity on the tag and rated for the lift?
 - Y []
 - N []
3. Is the tag secure?
 - Y []
 - N []
4. Is the tag date within 1 year?
 - Y []
 - N []
5. Is NDE information on master links in place?
 - Y []
 - N []

PADEYES
1. Are bore holes in padeyes smooth and unjagged?
 - Y []
 - N []
2. Are padeyes bent or deformed in any way?
 - Y []
 - N []
3. Is rust or corrosion visible in padeye?
 - Y []
 - N []

WIRE ROPE SLINGS
1. Is there rust within the slings?
 - Y []
 - N []
2. Are there any twists or kinks on the sling?
 - Y []
 - N []
3. Are there any broken wires or lays?
 - Y []
 - N []
4. Are the slings pitted?
 - Y []
 - N []
5. Are there any signs of heat damage or chemical burns on the slings?
 - Y []
 - N []

Master Links
1. Visual inspection performed by 2 Qualified Persons?
 - Y []
 - N []
2. Checked for allowed and dis-allowed manufacturers?
 - Y []
 - N []
3. Markings in place?
 - Y []
 - N []
SPREADER BAR
1. Are there bent padeyes on the spreader bar? □ Y □ N
2. Are there any cracks on the spreader bar? □ Y □ N
3. Is the load rating and SWL visible? □ Y □ N
4. Is there any corrosion on the assembly? □ Y □ N

DAMAGE ON EQUIPMENT
1. Is the frame of the equipment bent? □ Y □ N
2. Does the equipment have any punctures or cracks? □ Y □ N
3. Is there any sign of leakage? □ Y □ N
4. Is there any sign of rocks or trash? □ Y □ N

HOOKS
1. Do the hooks have any cracks in them? □ Y □ N
2. Do the hooks have any nicks in them? □ Y □ N
3. Do the hooks have any gouges in them? □ Y □ N
4. Is the manufacturer identification legible? □ Y □ N

SHIPPING CONTAINERS
1. Are the containers pre-slung? □ Y □ N
2. Are the slings in compliance? □ Y □ N
3. Does the container have an SWL permanently marked on it? □ Y □ N
4. Are shackles in compliance? □ Y □ N
5. Does the latch work? □ Y □ N
6. Are the hinges working correctly? □ Y □ N
7. Does the door close? □ Y □ N
8. Does the door lock? □ Y □ N

WEIGHT DECALS
1. Are the proper color-coded decals clearly visible to load-handling personnel on all lifts? □ Y □ N
2. Are the dates and weights marked on the decals? □ Y □ N
3. Are old, out-of-date color-coded decals not visible on the loads? □ Y □ N
Lifted Equipment Certification Exception List

NOTES:
1. The following type items are exempt from the requirement of having a “Lifted Equipment Certification Form” ([OPS0055-PR02-TO.12](#)).
2. Requests for additions to the exempt list shall be addressed to the Lifting and Hoisting Discipline Lead.

<table>
<thead>
<tr>
<th>No.</th>
<th>Item Name</th>
<th>Description</th>
<th>Usual Vendors</th>
<th>Example Pictures</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Drilling Tubulars</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Platform Crane Boom Sections</td>
<td>Lattice Type Structure used to make up the crane booms.</td>
<td>DW-GOM-owned Seatrax Energy Cranes</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Drilling Elevators</td>
<td></td>
<td>Franks, etc.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Drilling Bails</td>
<td></td>
<td>Franks, etc.</td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Item Name</td>
<td>Description</td>
<td>Usual Vendors</td>
<td>Example Pictures</td>
</tr>
<tr>
<td>-----</td>
<td>----------------------------</td>
<td>--</td>
<td>---------------</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td>5</td>
<td>Annular Preventer (Drilling)</td>
<td>The lifting points are designed to hold the weight of the entire BOP stack.</td>
<td></td>
<td>Image</td>
</tr>
<tr>
<td>6</td>
<td>Top Drive (Drilling)</td>
<td>The lifting points on a Top Drive unit are designed to hold the entire drill string weight (the Top Drive bails).</td>
<td>H&P, NOV</td>
<td>Image</td>
</tr>
<tr>
<td>7</td>
<td>Traveling Block (Drilling)</td>
<td>The lifting points are cast into the block housing as an integral unit and are designed to hold the block during drill line slip/cut operations.</td>
<td>H&P, NOV</td>
<td>Image</td>
</tr>
<tr>
<td>8</td>
<td>Hook (Drilling)</td>
<td>The lifting points (bail ears) are designed to hold the entire drill string weight.</td>
<td>H&P, NOV</td>
<td>Image</td>
</tr>
<tr>
<td>9</td>
<td>Personnel Escape Capsules</td>
<td>Capsules are designed for lifts with full complement of personnel on board. Shipping offshore empty is not near the same loading.</td>
<td></td>
<td>Image</td>
</tr>
<tr>
<td>10</td>
<td>Personnel Basket</td>
<td>Basket is designed for the transport of personnel to and from and vessels and offshore platforms.</td>
<td>Billy Pugh</td>
<td>Image</td>
</tr>
</tbody>
</table>
Lifted Equipment Certification Form (formerly Appendix G) (updated 02/2015)

Shell Purchased: □ Supplier: ____________________________________

Rental Equipment: □ Owner (Vendor): ____________________________________

Description:
(Required on all new forms after 2015)

Tare Weight (lbs.):
(Empty weight of container, tank, package, skid)

Working Load Limit (lbs.):
(Weight of liquid in tank, items in container, etc.)

Maximum Gross Weight (lbs.):
(Tare Weight + Working Load Limit = Maximum Gross Weight)

Floor Area Loading (psf):
(The maximum offshore dynamic load (psf) allowed on the floor of the container or building being certified. For buildings and containers only – N/A for other lifts)

Unique Identification Number:
(May be a range of numbers for production equipment)

I certify that the above-described lifted equipment: is designed for offshore dynamic lifting in accordance with the provisions of API RP2A-WSD (latest edition) section 5.4.2.3 “Dynamic Load Factors” and section 5.4.2.4 “Allowable Stresses”, documented with drawings and calculations.

NOTE: Rigging shall be per Shell Upstream DW-GOM OPS0055.

Registered Professional Engineer
(Civil, Structural, or Mechanical)

Date

Notes:

1. Owners of rental equipment shall keep a copy of this form on file for duration of equipment life and shall submit a copy to Shell upon request.
2. ISO blocks/connectors may not be used as lifting attachment points.
Letter to Suppliers

Shell Exploration & Production Company

To

Date

Subject: Lifting and Hoisting Standard Changes

Dear Sir/Madam:

You are receiving this letter because you currently provide goods or services to Shell Exploration & Production Company or one of its affiliates, operating in the Gulf of Mexico (hereinafter generally referred to as “Shell”). This letter is a notice to advise you of recent and planned changes to the Shell’s Lifting and Hoisting Standards (OPS 0055). These changes apply to all Shell contractors providing lifted containers, lifted equipment, and rigging equipment used by Shell’s Gulf of Mexico’s offshore facilities, and may require action to achieve compliance. If you do not supply offshore containers, lifted items, or lifting sets as part of your contract with Shell, please disregard this notice.

Aspirational Goal

Shell’s long term objective is to require all cargo containers, baskets, equipment, and associated lifting sets lifted by crane offshore to meet or exceed one of the major globally accepted standards for offshore lifted items. We believe that this step will reduce contractor efforts to manage and source equipment and containers destined for Shell facilities, improve overall safety and reliability, and ultimately reduce costs. Shell desires to utilize these standards to their full extent; however, until the market has time to adjust and Shell has gained more experience with these evolving standards, Shell plans to phase in these requirements over time.

Phase 1 Requirements

In this first phase, Shell requires that all cargo boxes, baskets, and associated lifting sets meet one of the following Standards by January 1, 2018.

1. BS/European Standard, EN 12079 Parts 1-3 (2006)
2. Det Norske Veritas, DNV 2.7-1 (June 2013)

These Standards apply to the design, manufacture, marking, periodic inspection, examination, testing, and record keeping of containers and associated lifting sets. Throughout the remainder of this letter, these three standards will be referred to as “Standards.” All containers, baskets, and lifting sets meeting one of these Standards are acceptable today.

A fourth standard, the American Petroleum Institute API 2CCU standard, is currently in draft form. When finally approved by API, Shell may include this standard, in part or in full, on its list of acceptable standards. Each of these Standards apply to items generally weighing less than 25,000 kg, which make up
more than 70% of the items Shell transports offshore. Lifted items weighing more than 25,000 kg or which do not fall under the scope of these Standards shall continue to be subject to existing OPS0055.

To help bridge the transition, Shell will continue to use the exception process described in the OPS0055-PR01 Design Requirements document for containers and baskets that do not meet the new Standards.

Of note, these standards impact hardware in lifting sets approved in current version of OPS0055-PR01 Design Requirements. Lifting sets meeting Standards are acceptable now. All shackles and links must meet the Standards after January 1, 2018. Existing waivers in OPS0055-PR01 associated with non-destructive examination (NDE) and “Shell accepted manufacturers” for links and shackles will be phased out in favor of the Standards. Contractors are encouraged to take Shell’s long term direction into account when replacing lifting sets for all items lifted by crane offshore. See Table 1 – Road Map of Approved Lifting Sets below.

Phase 2 and Beyond

Shell is reviewing standards applied to lifted tanks, equipment skids, hose reels, portable buildings, transportation cradles, wireline units, and other items falling outside of Phase 1. It is envisioned that Shell will require similar industry-wide standards for these pieces of equipment with a phase-in beginning in 2019 or 2020. Portable tanks will likely be the first class to be addressed. Contractors are encouraged to consider one of the Standards when purchasing or designing new items that will be lifted offshore.

Alterations to the Standards

The following additional requirements will be in place beginning January 1, 2018 until further notice:

1. Cargo Carrying Units (CCU’s) and lifting sets must be certified to one of the Standards by Det Norske Veritas (DNV), Lloyd’s Register (LR), American Bureau of Shipping (ABS), or other 3rd party approved by Shell.
2. All pre-slung equipment must have lifting sets certified to one of the Standards by DNV, LR, ABS or 3rd party approved by Shell.
3. Containers and lifting sets may be approved separately and under different Standards as long as the angles between slings and container and tolerances between shackles and pad eyes are within design specifications.
4. Each container must be load tested to 2 x MGW (Maximum Gross Weight) within the previous 5 years. A container should not be shipped offshore within 2 months of 5-year expiry.
5. All pre-slung lifting sets must be re-certified annually. Each leg of lifting sets must be load tested to 2 x WLL (Working Load Limit) within the previous 1 year.
6. Synthetic and chain lifting sets are not permitted for CCU’s.
7. Wire rope lifting sets must have a maximum service life of 10 years.
8. Alloy crimps on cable turn backs are not permitted.
9. The acceptable inspectors and surveyors are DNV, LR, ABS, or 3rd party approved by Shell.
10. All dumpsters, tank lifting frames, and bottle racks must meet these standards.
11. Stainless steel Intermediate Bulk Containers (IBC’s), commonly referred to as tote tanks, are permitted if accompanied by Shell Lifted Equipment Certification Form (formerly Appendix G) and if approved by USCG and DOT for intended purpose. Lifting set shall meet Standards.
12. Containers must be designed to avoid picking up stones and debris which cannot be easily seen and removed while container rests on the ground.
What stays the same

- Lifted items that do not meet Standards require proof of Engineering via Shell Lifted Equipment Certification Form (formerly Appendix G).
- Existing certification requirements related to IBC’s and chemical totes

Examples of items in scope

- Baskets (4x4, 4x8, 5x30, etc.)
- Containers (6x6x8, 8x10x8, etc.)
- Cutting boxes (10, 15, 20 bbl, etc.)
- Trash containers (dumpster, waste skips-open and closed top, etc.)
- Container racks (IBC totes, bottles, welding machines, drums, etc.)

Examples of items out of scope

- Items clearly designed to carry a specific tool or piece of equipment in support of other operations and do not have the appearance of general container types listed above. (e.g. carrying units for logging tools, x ray tools, sheave blocks, control panels)
- Stainless steel type IBC tote tanks (250 gal, 550 gal, etc.)
- Wireline unit
- Filtration skid
- Temporary housing unit
- Hose reel spool
- Pipe bolsters
- Casing bundles
- Bottom hole assembly cradles
- Crane booms

Where to get additional help

Shell’s core standards, including OPS0055 Lifting and Hoisting are available at www.uacontractor.com. There is a process available at that site if you are a new user or if you have forgotten your password.

For technical information on this subject, please contact Jim McClellon, Shell Lifting and Hoisting Custodian at +1 504-425-7132 or jim.mcclellon@shell.com.

Feedback and Comments

Shell welcomes your feedback on this proposed changed. Please contact Jim McClellon or Chris Psilos at 504-425-6116 or chris.psilos@shell.com.

Regards,

SHELL EXPLORATION & PRODUCTION COMPANY

By: Shell Energy Resources Company and Shell International Exploration & Production Company, pursuant to applicable Service Level Agreements

Ken Marnoch Suheyl Ozyigit
VP Production GOM GM Wells Operations
Shell Energy Resources Company Shell International Exploration & Production Company

Table 1 – Road Map for Approved Lifting Sets

<table>
<thead>
<tr>
<th>DW-GOM</th>
<th>OPS0055</th>
<th>Page 84 of 116</th>
</tr>
</thead>
<tbody>
<tr>
<td>December 2016</td>
<td>Lifting and Hoisting</td>
<td>Rev 6.1</td>
</tr>
</tbody>
</table>

The controlled version of this “Business Control Document” resides online. Printed copies are UNCONTROLLED.
<table>
<thead>
<tr>
<th>Description</th>
<th>Remainder of 2016</th>
<th>2017</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>API Lifting Sets with non-Shell approved hardware (Non-Destructive Examination Required)</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>API Lifting Sets with Shell preferred hardware (Crosby, Skookum, Hackett (DNV) and Gunnebo (DNV))</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>BS/EN 12079 Lifting sets (Certified by DNV, ABS, Lloyds Register ¹)</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>DNV 2.7-1 Lifting Sets (Certified by DNV, ABS, Lloyds Register ¹)</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>ABS Guide for Certification Offshore Containers Lifting Sets (Certified by DNV, ABS, Lloyds Register ¹)</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>API 2CCU Lifting Sets ¹</td>
<td>Under Review</td>
<td>Under Review</td>
<td></td>
</tr>
</tbody>
</table>

¹ Shell Approved Certification Agencies may be added or changed. See latest copy of OPS0055 for list.
PROCEDURE OPS0055-PR03
TESTING AND INSPECTION REQUIREMENTS

1 INTRODUCTION

1.1 Overview

1.1.1 In this Chapter
This Procedure includes:
• A Testing and Inspection Matrix that identifies the type and frequency of tests and inspections
• The following supplemental sections that outline additional details associated with these tests and inspections:
 • Lifting Appliances Supplement,
 • Lifting Accessories Supplement, and
 • Lifted Equipment Supplement.

1.1.2 Inspections
Inspections must be performed and documented by the following individuals:

<table>
<thead>
<tr>
<th>Inspection</th>
<th>Responsible Party</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-Use</td>
<td>QO/QP/QI</td>
</tr>
<tr>
<td>Monthly</td>
<td>QO/QP/QI</td>
</tr>
<tr>
<td>Quarterly</td>
<td>QI</td>
</tr>
<tr>
<td>Annual</td>
<td>DW-GOM Cranes-SCI/Contract Crane-QI</td>
</tr>
<tr>
<td>Heavy Lift</td>
<td>DW-GOM Cranes-SCI/Contract Crane-QI</td>
</tr>
</tbody>
</table>

2 TESTING AND INSPECTION MATRIX

2.1 Matrix

2.1.1 Matrix Tool
See OPS0055-PR03-TO.01 for matrix.
3 LIFTING APPLIANCES SUPPLEMENT

3.1 Offshore Pedestal Cranes

3.1.1 Inspection Frequency

For the purposes of inspection frequency, all DW-GOM offshore pedestal cranes are designated as heavy usage cranes and therefore require pre-use, monthly, quarterly, and annual inspections.

NOTES:

- A full pre-use inspection is required any time a crane will be operated, including maintenance duties.
- A full pre-use inspection will be performed by the first operator of the day and after any operator change.
- In situations where an operator must be relieved for less than one hour, a substitute operator of equal qualification must perform a pre-use inspection, less walking the boom.
- Any relief lasting longer than 1 hour will be deemed an operator change and a full pre-use inspection must be performed. Short changes shall be minimized.

3.1.2 Heavy Lift Inspections

- A heavy lift inspection is valid for 14 days.
- Any deficiencies identified after the inspection, but before the lift, must be communicated to the SCI Group for review.

3.1.3 Load Testing

Load tests must be:

- performed in daylight hours only
- performed and documented by a QI in accordance with the Inspection and Testing Matrix (OPS0055-PR03-TO.01) and API RP 2D Annex D,
- values approved by the Civil Marine Group, and
- documented and submitted to the SCI Group.

NOTE: Offshore temporary cranes require NDE pre-load and post-load tests.

3.1.4 Pull Test

Pull test is required for:

- calibrating weight indicators
- when installing temporary cranes and if any one piece of the temporary crane package is equal to or exceeds 80% of the rated capacity of the platform crane at the anticipated radius, an annual type inspection and pull test will be performed within 30 days prior to the lift.
3.2 Mobile Cranes

3.2.1 Frequent Inspections
The QP shall perform daily and monthly documented inspections.

NOTE: Inspections for running wire rope must be documented.

3.2.2 Periodic Inspection
The QP shall perform and document periodic inspections as follows:
- Permanently affix a tag to the equipment showing that it passed inspection. The tag must include:
 - date of inspection,
 - person and company that performed the inspection,
 - unit or serial number, and
 - date that the inspection expires.
- All cranes deemed unfit for use as a result of inspection must be taken out of service and repaired before being put back into service.

3.2.3 Operational Test
The QP shall test all motions (hoisting/lowering/traversing) with a nominal load.

An operational test must be performed:
- after each boom change (when boom disassembly/assembly is required), and/or
- when replacing ropes.

3.2.4 Load Testing
Load tests conducted by the manufacturer before delivery are acceptable if load test papers are provided to verify the extent and thoroughness of the test.

The QP shall:
- perform and document the load test in accordance with SAE J987 (structural load testing) and SAE J765 (stability testing),
- verify that test loads are:
 - as close as possible to, but not exceeding, 110% of the rated load at the given radius, and
 - lifted slowly and in an area where minimal damage will occur if the crane fails, and
- check holding brakes to:
 - verify stopping capabilities, and
 - demonstrate the ability to hold a rated load. The load must be held long enough to allow any dynamics to dampen out.

NOTE: Repairs or alterations to non-lifting, secondary lifting, or holding components (suspension assemblies, electrical system, crane cab, etc.) do not require a load test, although a functional check should be performed to determine if the repairs or alternations are acceptable.

Load tests are required on components directly involved with lifting or holding that have been repaired or altered.
NOTE: A load test is not required when replacing ropes with certified equipment.

3.3 Gin Pole Trucks and Derricks

3.3.1 Frequent Inspection

The QP shall conduct daily and monthly *undocumented* inspections.

NOTE: Inspections for running wire rope must be documented.

3.3.2 Periodic Inspection

The QP shall perform and document periodic inspections as follows:
- Permanently affix a tag to the equipment showing that it passed inspection. The tag must include:
 - date of inspection,
 - unit or serial number, and
 - person and company performing inspection, date that the inspection expires.
- Inspect critical items such as:
 - hoisting machinery,
 - sheaves,
 - chains, and
 - hooks, ropes.
- All gin-pole trucks and derricks deemed unfit for use by inspection must be taken out of service and repaired before being put back into service.

NOTE: Repaired, altered, or modified gin pole trucks and derricks must be functionally tested.

3.3.3 Operational Test

The QP shall test all motions (hoisting/lowering/traversing) with a nominal load.

NOTE: Repairs or alterations to non-lifting, secondary lifting, or holding components (suspension assemblies, electrical system, crane cab, etc.) do not require a load test, although a functional check should be performed to determine if the repairs or alterations are acceptable.
3.4 Articulating Boom Cranes

3.4.1 Frequent Inspection

The QP shall conduct daily and monthly *undocumented* inspections.

NOTE: Inspections for running wire rope must be documented.

3.4.2 Periodic Inspection

The QP shall perform and document periodic inspections as follows:
- Permanently affix a tag to the equipment showing that it passed inspection. The tag must include:
 - date of inspection,
 - person and company performing inspection,
 - unit or serial number, and
 - date that the inspection expires.
- Inspect critical items such as:
 - hoisting machinery,
 - sheaves,
 - hooks, and
 - ropes.
- All articulating boom cranes deemed unfit for use by inspection must be taken out of service and repaired before being put back into service.

3.4.3 Operational Test

The QP shall test all motions (hoisting/lowering/traversing) with a nominal load.

NOTE: Repaired, altered, or modified articulating boom cranes must be functionally tested.

3.4.4 Load Testing

Must be performed and documented with known weights or a certified dynamometer by a QP as follows:
- Lift the load slowly and in an area where minimal damage will occur if the articulating boom crane fails.
- Check holding brakes to:
 - verify stopping capabilities, and
 - demonstrate the ability to hold a rated load. The load should be held long enough to allow any dynamics to dampen out.

NOTE: Repairs or alterations to non-lifting, secondary lifting, or holding components (suspension assemblies, electrical system, crane cab, etc.) do not require a load test, although a functional check should be performed to determine if the repairs or alternations are acceptable.
3.5 Aerial Platforms

3.5.1 Frequent Inspection
The QP shall conduct daily and monthly documented inspections.

3.5.2 Periodic Inspection
The QP shall perform and document periodic inspections in the lifting register as follows:
- Permanently affix a tag to the equipment showing that it passed inspection. The tag must include:
 - date of inspection,
 - person and company performing inspection,
 - unit or serial number, and
 - date that the inspection expires.

NOTE: All platforms deemed unfit for use as result of inspection must be taken out of service and repaired before being put back into service.

3.5.3 Operational Test
The QP shall test all motions (hoisting/lowering/traversing) with a nominal load.

The following additional requirements apply:
- Perform all functions in an unloaded condition, including operation of limit switches and tilt alarm/shutoff.
- Where possible, use ground control station.
- When required to use the platform control station, operate close to ground level.

3.5.4 Load Test
The QP shall perform and document the load test as follows:
- The load must be secured to the aerial platform and lifted slowly in an area where minimal damage will occur if the device fails.
- Test at maximum boom radius over the rear, if applicable. Hold the load for a minimum of 5 minutes and verify that drift does not exceed that specified by the responsible engineering organization.

NOTES:
- Repairs or alterations to non-lifting or non-holding components do not require a load test, although a functional check should be performed to determine if the repairs or alterations are acceptable.
- A load test is not required when replacing ropes with certified equipment.
3.6 Overhead Cranes

3.6.1 Frequent Inspection

The QP shall conduct daily and monthly *undocumented* inspections.

NOTE: Inspections for running wire rope and chain must be documented.

3.6.2 Periodic Inspection

The QP shall perform and document periodic inspections as follows:

- Permanently affix a tag to the equipment showing that it passed inspection. The tag must include:
 - date of inspection,
 - person and company performing inspection,
 - unit or serial number and
 - date that the inspection expires.
- All cranes deemed unfit for use as a result of inspection must be taken out of service and repaired before being put back into service.

3.6.3 Operational Test

The QP shall test all motions (hoisting/lowering/traversing) with a nominal load.

NOTE: The operational test for a modified crane can be tailored to test those portions of the equipment that were modified.

3.6.4 Load Testing

Load tests of monorail systems shall be performed in accordance with following:

- Hoists used in monorail systems shall have been conducted by the manufacturer prior to delivery, and documentation verifying the description and completion of the test shall be provided by the manufacturer.
- The hoist load magnitude used to conduct the test of the monorail system shall be the same load magnitude as was used when the hoist was tested by the manufacturer.
- All connections between beams and supporting structure will be inspected, and if connections are welded, 100% of all welds shall be tested using approved NDE methods.
- Lift the load slowly and in an area where minimal damage will occur if the hoist or lifting device fails.
- Check holding brakes to:
 - Verify stopping capabilities, and
 - Demonstrate the ability to hold a rated load. The load should be held long enough to allow any dynamics to dampen out.

Load tests of monorail systems may be waived on a case by case basis with the approval of the Technical Authority, Lifting and Hoisting, under the following conditions:

- The monorail beams and support system, including all connections, shall have been designed by a Registered Professional Engineer for the full load carrying capacity of the hoist or load carrying mechanism plus the required overload factor.
- All connections between beams and supporting structure will be inspected, and if connections are welded, 100% of all welds shall be tested using approved NDE methods
- An operational test shall be performed as described in 3.6.3
- The project team shall deliver a data book containing the following:
 - Monorail design calculations stamped by a Registered Professional Engineer.
 - Fabrication records
 - NDE test results for all welding performed

NOTE: Repairs or alterations to non-lifting, secondary lifting, or holding components (suspension assemblies, electrical system, crane cab, etc.) do not require a load test, although a functional check should be performed to determine if the repairs or alterations are acceptable.

Load tests are required on components directly involved with lifting or holding that have been repaired or altered.

NOTE: A load test is not required when replacing ropes with certified equipment.

3.7 Winches

3.7.1 Frequent Inspection

The QP shall conduct daily and monthly *undocumented* inspections.

3.7.2 Periodic Inspection

The QP shall perform and document periodic inspections in the lifting register as follows:

- Permanently affix a tag to the equipment showing that it passed inspection. The tag must include:
 - date of inspection,
 - person and company performing inspection,
 - unit or serial number, and
 - date that the inspection expires.
- All winches deemed unfit for use as a result of inspection must be taken out of service and repaired before being put back into service.
- Any winch with suspected or confirmed overload shall be taken out of service, disassembled, inspected, repaired, and tested before returning to service.

3.7.3 Operational Test

The QP shall test all motions (hoisting lowering).

NOTE: The operational test for winches can be tailored to test only those portions of the equipment that were modified.
3.7.4 Load Test Must be performed and documented with known weights or a certified dynamometer by a QP as follows:
- Lift the load slowly and in an area where minimal damage will occur if the winch fails.
- Check holding brakes to:
 - verify stopping capabilities, and
 - demonstrate the ability to hold a rated load. The load should be held long enough to allow any dynamics to dampen out.

NOTE: Only components directly involved with lifting or holding that have been repaired or altered require load testing. A load test is not required when replacing ropes with certified equipment.

3.8 Powered Industrial Trucks (Forklifts)

3.8.1 Frequent Inspection The QP shall conduct daily and monthly documented inspections.

3.8.2 Periodic Inspection The QP shall perform and document periodic inspections as follows:
- Permanently affix a tag to the equipment showing that it passed inspection. The tag must include:
 - date of inspection,
 - person and company performing inspection,
 - unit or serial number, and
 - date that the inspection expires.
- All powered industrial trucks deemed unfit for use by inspection must be taken out of service and repaired and inspected before being put back into service.

3.8.3 Operational Test Operational tests must be completed by a QP as follows:
- Perform all functions in a loaded condition, including tilt operation.
- Hold the load for a minimum of 5 minutes.
- Verify that drift does not exceed that specified by the responsible engineering organization.

NOTE: The operational test for a modified powered industrial truck can be tailored to test only those portions of the equipment that were modified/repaird.
3.8.4 Load Test Must be performed and documented with known weights or a certified dynamometer by a QP as follows:

- Lift the load slowly and in an area where minimal damage will occur if failure occurs.
- Check holding brakes to verify stopping capabilities and demonstrate the ability to hold a rated load. The load should be held long enough to allow any dynamics to dampen out.

NOTE: Repairs or alterations to non-lifting or non-holding components do not require a load test, although a functional check should be performed to determine if the repairs or alterations are acceptable.

3.9 Hoists (Manual Lever and Manual/Powered Overhead Hoists)

3.9.1 Frequent Inspection The QP shall conduct daily and monthly undocumented inspections.

NOTE: Inspections for running wire rope must be documented.

3.9.2 Periodic Inspection
- Must be performed and documented in the lifting register by a QP.
- All hoists deemed unfit for use by inspection must be taken out of service and repaired and inspected before being put back into service.
- Add color coding to indicate inspection date.

3.9.3 Operational Test The QP shall test all motions (hoisting/lowering).

3.9.4 Load Test Must be performed and documented with known weights or a certified dynamometer by a QP as follows:

- Lift the load slowly and in an area where minimal damage will occur if hoist fails.
- Check holding brakes to verify stopping capabilities and demonstrate the ability to hold a rated load. The load should be held long enough to allow any dynamics to dampen out.

NOTES:

- Load test certificates shall be available upon request.
- Only components directly involved with lifting or holding that have been repaired or altered require load testing. A load test is not required when replacing ropes with certified equipment.
- If a hoist is re-rated, a load test must be performed based on the re-rating.
3.10 Jacks

3.10.1 Frequent Inspection
The QP shall conduct daily and monthly undocumented inspections.

3.10.2 Periodic Inspection
- Must be performed and documented in the lifting register by a QP.
- Jacks deemed unfit for use as a result of inspection must be taken out of service and repaired before being put back into service.
- Add color coding to indicate inspection date.

3.10.3 Operational Test
The QP shall test all motions (hoisting/lowering).

3.10.4 Load Test
Must be performed and documented with known weights or a certified dynamometer by a QP as follows:
- Lift the load slowly and in an area where minimal damage will occur if jack fails.
- Check holding brakes to verify stopping capabilities and demonstrate the ability to hold a rated load. The load should be held long enough to allow any dynamics to dampen out.

NOTE: Only components directly involved with lifting or holding that have been repaired or altered require load testing.

3.11 Beam Clamps

3.11.1 Frequent Inspections
The QP shall perform frequent, undocumented inspections as follows:
- Verify that the correct size of beam clamp is selected.
- Check for defects such as damage, distortion, cracks, corrosion, wear, etc. (Particular attention should be paid to the threads.)

NOTE: All beam clamps unfit for use must be tagged Do Not Use, and sent for repair or destroyed at the earliest opportunity.

3.11.2 Periodic Inspections
Must be performed and documented in the lifting register by a QP as follows:
- File sling annual inspection records with certification papers.
- Add color coding to indicate the inspection date.
3.12 Fixed Lifting Points

3.12.1 Frequent Inspections
The QP shall perform frequent, *undocumented* inspections as follows:
- Check for defects such as damage, distortion, cracks, corrosion, etc. (Particular attention should be paid to the condition of the flanges.)
- Where gantry cranes or beam trolleys are used, verify that the runway beams have end stops fitted.

3.12.2 Periodic Inspections
The QP shall perform a thorough visual inspection every 2 years to include inspection of the securing bolts/welds that support the beam itself.

NOTE: All fixed lifting points shall be listed in lifting register.

3.12.3 Uncertified Lifting Beams
Any accessible load-supporting arrangement (e.g. a hole in the beam, welded plate) that is not certified must be identified and tagged “Not Suitable For Lifting”.

3.12.4 Load Testing
Padeyes must be:
- proof tested to 125% of the working load limit, or
- tested/inspected in accordance with licensed engineer’s requirements before being put into use and following any significant repairs or modifications.

Tests must be conducted with magnetic particles and/or dye penetrant following proof testing.

3.13 Wire Rope

3.13.1 Wire Rope Inspection Criteria
Use the table below to determine the standard to use for inspecting and replacing wire rope.

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Wire Rope Inspection Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offshore pedestal cranes</td>
<td>API RP 2D, [OPS0055-PR02-TO.12](formerly Appendix G)</td>
</tr>
<tr>
<td>Mobile cranes</td>
<td></td>
</tr>
<tr>
<td>Overhead cranes</td>
<td></td>
</tr>
<tr>
<td>Derricks</td>
<td></td>
</tr>
<tr>
<td>Winches</td>
<td></td>
</tr>
<tr>
<td>Any other type of crane</td>
<td>Latest edition of the respective ASME Standard</td>
</tr>
</tbody>
</table>
4 LIFTING ACCESSORIES SUPPLEMENT

4.1 Slings – Wire Rope

4.1.1 Frequent Inspection (Non Pre-slung)

The QP shall complete frequent, *undocumented* inspections as follows:
- Check for defects such as damage and corrosion.
- Check for proper configuration (the lifting assembly and associated hardware, as load tested).
- Verify the sling has current certification.

NOTES:
- Any sling without a certification tag must be removed from service and recorded in the lifting register. The sling must be re-certified prior to use.
- Slings must be removed from service if any inadequacy is found.

4.1.2 Periodic Inspection (Non Pre-slung)

The QP shall perform and document periodic inspections as follows:
- File sling annual inspection records with certification papers.
- Add color coding to indicate the inspection date.
- Verify that pre-slung slings are replaced or recertified annually.
- Verify that sling is logged in the location’s lifting register.

Slings > 10 years old or found in an unsafe operating condition must be discarded according to discard procedure below.

4.1.3 Discard Procedure (Non Pre-slung)

- Tag as Do Not Use.
- Remove from service.
- Record in lifting register.
- Remove test certificates from the filing system.
- Cut the eyes out of the sling or verify that the sling is otherwise obviously destroyed to an unusable state and sent for disposal.

4.1.4 Certification of New Wire Rope Slings (Non Pre-slung)

Certification/recertification tags are required as described in:
- API RP 2D and
- ASME B30.9.

Certification tags must list the following:
- Sling manufacturer, certificate number, and date of manufacture
- Working load limit
- Proof test certification number
- Sling length and diameter
- Date of proof test
- Rated load for the type of hitch(es) and the angle upon which it is based
- Minimum basket, choke and vertical

NOTE: In 2016 all sling master and sub-masterlink assemblies shall be:
4.1.5 Re-Certification of Wire Rope Slings Used for CCUs and Non-CCU Equipment

Slings used for pre-slinging equipment going offshore must bear a certification/re-certification tag not more than 1 year old.

Re-certification of pre-slung slings will include a load test.

The certification tag must clearly indicate:
- Re-certification date
- Original manufacture date
- Load test date

If original the manufacturing tags are removed by the re-certifying agency, all OEM tag information must be kept on the new certificate.

NOTE: In 2016 all sling master and sub-masterlink assemblies shall:
- be from a Shell-accepted manufacturer as listed in OPS0055-PR01 section 3.3.1 or
- provide tagging and documentation of NDE from a 3rd party inspection agency qualified to ASNT level 2 or equivalent.

Starting January 1, 2017 all sling master and sub-masterlink assemblies shall be from a Shell-accepted manufacturer as listed in OPS0055-PR01 section 3.3.1.

Starting January 1, 2018 sling sets for CCUs and non-CCU pre-slung equipment (including masterlinks and shackles) must be fully compliant with DNV·GL 2.7-1 or EN 12079 standards. See OPS0055-PR01 section 4.1.2 for more details.

4.1.6 Load Test

The QP shall perform and document a load test in accordance with the Testing and Inspection Matrix (OPS0055-PR03-TO.01), ensuring to test all components together as a system, if practical.

NOTE: Load tests performed by the manufacturer before delivery are acceptable, if the necessary load test papers are provided to verify the extent and thoroughness of the test on the specific item.
4.2 Slings – Synthetic

4.2.1 Frequent Inspection
The QP shall complete frequent, undocumented inspections as follows:
- Check for defects such as damage and deterioration.
- Check for proper configuration (the lifting assembly and associated hardware, as load tested).
- Verify that the sling has current certification.

NOTES:
- Any sling without a certification tag must be removed from service and recorded in the lifting register. The sling must be re-certified prior to use.
- Slings must be removed from service if any inadequacy is found.

4.2.2 Periodic Inspection
Synthetic slings must:
- be replaced annually and have a certificate of conformity available upon request from the sling owner, indicating that the sling is not more than 1 year old,
- be logged in the location’s lifting register,
- be stored in an enclosed area (e.g. rigging/store and contractors tool-house/box) to minimize exposure to moisture, UV rays, and chemicals,
- have a legible tag marked with the working load and certification and manufacture date, and
- be inspected by a Qualified Rigger to verify the following do not exist:
 - cuts, tears, or abrasion,
 - fraying or bursting of stitching,
 - penetration of foreign bodies (e.g. sand, metal, glass, etc.) into the fibers,
 - damage from heat or chemicals, and
 - distortion or excessive wear of the metal eyes, where fitted.

Any of the above conditions require the sling to be removed from service and discarded using the sling discard procedure (4.1.3).

4.3 Slings – General

4.3.1 Certification
As part of the lifting register, an up-to-date inventory of all slings kept on the installation must be readily available for audit purposes. As new slings are received, the lifting register must be updated (e.g. periodic recertification program). The lifting register must contain the following information:
- Certificate number
- Date of certification
- Working load limit
- Basic description of sling (size, length, etc.)
- Name of manufacturer/certifying test facility
4.3.2 Load Test The QP shall perform and document a load test in accordance with the Testing and Inspection Matrix (OPS0055-PR03-TO.01), testing all components together as a system, if practical.

NOTE: Load tests performed by the manufacturer before delivery are acceptable if the necessary load test papers are provided to verify the extent and thoroughness of the test on the specific item.

4.4 Spreader Bars/Special Lifting Devices/Plate Clamps

4.4.1 Frequent Inspections The QP shall check for:
- damage,
- smooth boreholes (padeyes),
- security of weld/bolts,
- deformation, and
- corrosion,
- cracks,
- wear,
- correct and legible tag information.

4.4.2 Periodic Inspection The QI shall perform and document periodic inspections in the lifting register as follows:
- Permanently affix a tag to the equipment showing that it passed inspection. The tag must include:
 - date of inspection,
 - person who performed inspection,
 - unit or serial number, and
 - date that the inspection expires.
- Add color coding to indicate inspection date.

All spreader bars/special lifting devices/plate clamps deemed unfit for use by inspection must be:
- tagged as Do Not Use, and
- taken out of service and repaired, retested, or destroyed.

4.4.3 Load Testing After performing and documenting the load test in accordance with the Testing and Inspection Matrix (OPS0055-PR03-TO.01), the QP shall verify that the following are permanently affixed:
- Working load limit
- Weight of lifting device
- Serial number
- Manufacturer’s name

NOTE: Load tests performed by the manufacturer before delivery are acceptable, if the necessary load test papers are provided to verify the extent and thoroughness of the test on the specific item.
4.4.4 Tension Load Cells
Load cells shall be periodically inspected as recommended by the manufacturer’s in-service inspection plan to verify the integrity of the product over its life. The inspection plan shall include frequency and type of inspection.

Minimum requirements shall be a detailed annual visual inspection and a wet fluorescent magnetic particle NDE and inspection of the critical areas of the load cell every 3 years. Load cells shall be replaced based on fatigue calculations supplied by the vendor.

Tension load cell designs used on all Shell sites shall be proof tested 33% over the SWL as per the recommendations for design verification of crane components in API 2C. Proof loading certificates of conformity shall be readily available for all cranes and lifting devices using the tension load cells.

All tension load cells used in the vicinity of wells and perforating equipment shall be certified as safe and that the wireless transmissions will not affect perforating operations. The load cell supplier shall supply upon request a certified statement that their product does not affect well perforating operations.

4.5 Shackles/Eyebolts/Masterlinks/Turnbuckles

4.5.1 Frequent Inspections
The QP shall complete frequent, undocumented inspections as follows:
• Check for defects (damage, distortion, corrosion, etc.)
• Verify that the shackle has the correct pin and fits satisfactorily.

All shackles not fit for use must be tagged as Do Not Use and destroyed at the earliest opportunity.

4.6 Open-Wedge Sockets

4.6.1 Frequent Inspections
The QP shall:
• Verify the correct size of open wedge socket is selected.

NOTE: Particular attention should be paid to verify that all components of the assembly are matched (wedge, socket, and pin).

• Check for defects such as damage, distortion, cracks, corrosion, wear, etc.

All open wedge sockets not fit for use must be tagged as Do Not Use and destroyed at the earliest opportunity.

4.6.2 Periodic Inspection
Incorporated into the applicable lifting appliance inspection for the system of which it is a part.
4.7 Rigging Blocks

4.7.1 Frequent Inspections
The QP shall complete frequent, *undocumented* inspections as follows:
- Check for defects (damage, distortion, cracks, corrosion, wear, etc.).
- Check rigging blocks for free rotation.
- Examine swivel head fitting and check for wear, stretch, etc.

All rigging blocks unfit for use must be tagged as Do Not Use, and sent for repair or destroyed at the earliest opportunity.

4.7.2 Periodic Inspection
The QP shall perform and document periodic inspections in the lifting register in accordance with the Testing and Inspection Matrix (*OPS0055-PR03-TO.01*), to include:
- Filing annual inspection records with certification papers
- Adding color-coding to indicate the inspection date

4.7.3 Proof Testing
The QP shall perform a proof test in accordance with the manufacturer’s recommendations following any significant repairs or modifications.

5 LIFTED EQUIPMENT SUPPLEMENT

5.1 Testing and Inspection Requirements

5.1.1 Offshore CCUs
Starting January 1, 2018 CCU owners are responsible for ensuring that CCUs are inspected and tested per DNV•GL 2.7-1 or EN 12079 requirements.

Non-CCU pre-slung equipment shall meet the testing requirements in *OPS0055-PR03-TO.01*.

5.1.2 Temporary Offshore Buildings
Temporary offshore buildings are required to follow all testing and inspection requirements for offshore containers with the exception of full load tests. Temporary offshore buildings will not be loaded with anything that was not taken into account on the original design calculations.

5.1.3 Frequent Inspection
The QP shall conduct daily pre-use undocumented inspections.

5.1.4 Periodic Inspections
The QP shall conduct inspections annually. Documentation does not have to accompany the lifted equipment, but shall be available upon request.
Testing and Inspection Matrix

The following matrix identifies the type and frequency of tests and inspections of lifting appliances, lifting accessories, and lifted equipment.

<table>
<thead>
<tr>
<th>Location</th>
<th>Inspection Requirements</th>
<th>Testing Requirements</th>
<th>Record Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Documented inspections (D)</td>
<td>Documented Operational Test (DO)</td>
<td>Documented Load Test (DL)</td>
</tr>
<tr>
<td></td>
<td>Undocumented inspections (U)</td>
<td>Prior to Heavy Lift (WLL)</td>
<td>Prior to Heavy Lift (WLL)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prior to First Usage</td>
<td>Prior to First Usage</td>
</tr>
<tr>
<td></td>
<td></td>
<td>After modification</td>
<td>After modification</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Every 4 Years</td>
<td>Every 5 Years</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Applies to</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offshore Pedestal Crane Fixed Platform</td>
<td>D D D D</td>
<td>D D</td>
<td>D D</td>
</tr>
<tr>
<td>Offshore Pedestal Crane Floating</td>
<td>D D D D</td>
<td>D D</td>
<td>D D</td>
</tr>
<tr>
<td>Offshore Temporary Cranes</td>
<td>D D D D</td>
<td>D D</td>
<td>D D</td>
</tr>
<tr>
<td>Overhead and Gantry Cranes</td>
<td>U D D</td>
<td>U</td>
<td>D</td>
</tr>
<tr>
<td>Overhead Hoists Underhung (chain hoists, air hoists)</td>
<td>U D D</td>
<td>U</td>
<td>D</td>
</tr>
<tr>
<td>Manual Lever Hoists (Come-alongs)</td>
<td>U U D D</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>Wire Rope Hoists (Tirfors)</td>
<td>U U D D</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>Mobile Cranes</td>
<td>U D D</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>Gin Poles/Derricks</td>
<td>U D D</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>Wire Rope for above</td>
<td>U</td>
<td>U</td>
<td>D</td>
</tr>
<tr>
<td>Winches</td>
<td>U U D D</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>Man-Riding Winches</td>
<td>D D D D</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>Forklifts</td>
<td>D D D D</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>Jacks</td>
<td>U U D D</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>Aerial Platforms</td>
<td>D D D D</td>
<td>D</td>
<td>U</td>
</tr>
<tr>
<td>Shackles</td>
<td>U</td>
<td>U</td>
<td>D</td>
</tr>
<tr>
<td>Masterlinks (not part of slinging sets)</td>
<td>U</td>
<td>U</td>
<td>D</td>
</tr>
<tr>
<td>Eyebolts</td>
<td>U</td>
<td>U</td>
<td>D</td>
</tr>
<tr>
<td>Turnbuckles</td>
<td>U</td>
<td>U</td>
<td>D</td>
</tr>
<tr>
<td>Open Wedge Sockets</td>
<td>U D D</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>Slings (pre-slung)</td>
<td>U</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>Slings (pre-slung)</td>
<td>U D D</td>
<td>U</td>
<td>D</td>
</tr>
<tr>
<td>Spreader Bars</td>
<td>U D D</td>
<td>U</td>
<td>D</td>
</tr>
<tr>
<td>Spreaders</td>
<td>U D D</td>
<td>U</td>
<td>D</td>
</tr>
<tr>
<td>Beam Clamps</td>
<td>U D D</td>
<td>U</td>
<td>D</td>
</tr>
<tr>
<td>Beam Trolleys</td>
<td>U D D</td>
<td>U</td>
<td>D</td>
</tr>
<tr>
<td>Plate Clamps</td>
<td>U D D</td>
<td>U</td>
<td>D</td>
</tr>
<tr>
<td>Sheave Blocks</td>
<td>U U</td>
<td>U</td>
<td>D</td>
</tr>
<tr>
<td>Padeyes Certified Lifting Points (not part of containers)</td>
<td>U U</td>
<td>U</td>
<td>D</td>
</tr>
<tr>
<td>Tension Load Cells</td>
<td>U D D</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>Offshore Containers CCU and non-CCU</td>
<td>U D D</td>
<td>D</td>
<td>D</td>
</tr>
</tbody>
</table>

Notes
1. Wire rope slings shall be replaced or re-certified annually. Man-made fiber slings shall be replaced annually. Refer to Test/Inspection procedures for additional information. Slings will be retired from service at 10 years from date of manufacture.
2. Surface NDT inspection (magnetic particle or dye penetrant) shall be conducted following proof load testing and prior to further use of equipment.
3. DL and DO tests shall be kept on location by the owner for a minimum of two test cycles and shall be made readily available.
4. Where periodic inspections were suspended for idled or standby equipment, a formal documented inspection is required prior to returning equipment to service.
5. Operational testing may be carried out as part of heavy lift inspections or at any time deemed appropriate to check equipment integrity.
8. A Registered Professional Engineer will determine whether or not load testing is required for load-bearing components affected by repairs. A proof load test is not required when replacing ropes with certified items (however, an operational test is required). Repairs or alterations to non-lifting components or components such as electrical or control systems, crane cab, etc., do not require a load test, although a functional check shall be performed to determine if the repairs or alternations are acceptable.
9. Pre-use load test shall be carried out each time the personnel lifting device is taken to a new job site and when the device is moved to a previously tested site. The pre-use load test requirement may be fulfilled by a concurrently performed load test.
10. Inspection included with equipment of which it is a part.
11. Padeyes must be proof tested to 125% of the working load limit or tested/inspected in accordance with licensed engineer’s requirements prior to being put into use and following any significant repairs or modifications.
12. USCG Load Test must be kept on location for 5 years.
13. See OPS055-PR03 section 5.1.1 for testing requirements.
14. Wet Fluorescent Magnetic Particle NDE inspection.
15. See OPS055-PR03 section 4.4.4 for testing requirements.
16. Documentation does not have to accompany the lifted equipment, but shall be available upon request.
17. As determined by a Registered Professional Engineer, see OPS055-PR03 section 3.6.4.
18. Offshore temporary cranes require NDE pre- and post-load test.

Tool: OPS055-PR03 TO.01

Lifting and Hoisting

December 2016

Rev 6.1

The controlled version of this "Business Control Document" resides online. Printed copies are UNCONTROLLED.
PROCEDURE OPS0055-PR04

MAINTENANCE AND REPAIR REQUIREMENTS

1 INTRODUCTION

1.1 Overview

1.1.1 In this Chapter

This chapter provides the maintenance requirements for the following:
- Lifting Appliances
- Wire Rope

2 LIFTING APPLIANCES

2.1 Overview

2.1.1 In this Section

This section provides the requirements for the maintenance of all lifting equipment.

2.1.2 General Requirements

The following is required for all lifting equipment:
- A Preventive Maintenance (PM) program based on manufacturers’ recommendations, which will document completed work and correction of deficiencies, must be implemented.
- A functional test must be conducted and documented after repairs or replacement.
- All critical components must be repaired or replaced promptly by or under supervision of a QP.
- The maintenance program must be contained in SAP PM for DW-GOM-owned equipment. Contractors shall have a system in place for their equipment and maintain records on rental equipment as prescribed by applicable regulations.

2.1.3 Replacement Parts

For lifting equipment, an Original Equipment Manufacturer (OEM) or other approved vendor shall supply parts or components.

For DW-GOM lifting equipment, the Specialist Crane Inspector (SCI) Group or designee must approve contractor/vendor selection.

For offshore pedestal cranes, an API Spec 2C-licensed shop may supply crane parts or components (booms, winches, bearings, gantry pedestals, etc.).
2.1.4 Repairs

Structural repairs of lifting equipment must be performed by qualified personnel per manufacturers’ recommendations and the applicable ASME B30 document. For DW-GOM lifting equipment the SCI Group or designee shall perform/approve the scope of all structural repair and Contractor/Vendor selection.

For offshore pedestal cranes:
• The OEM or an API Spec 2C-licensed shop must perform repairs to any structural members (booms, winches, gantry pedestals, etc.).
• For structural repairs of DW-GOM pedestal cranes, the SCI Group must approve the scope of repairs and contractor selection.

NOTE: Repair documentation of critical components shall include MTRs (as applicable), welder qualifications, and welding procedure(s) identification number. This documentation shall be maintained in the crane files for the life of the crane.

3 WIRE ROPE

3.1 Overview

3.1.1 In This Section

This section specifies requirements for wire rope.

3.1.2 Wire Rope Replacement

The need to replace wire rope must be determined by a QP based on inspection results.

For offshore pedestal cranes, the QI shall determine the need to replace wire rope. Unless conditions (e.g. exposure to heat) warrant earlier replacement, use the following table to replace wire rope.

<table>
<thead>
<tr>
<th>Rope Type</th>
<th>Replace Every</th>
</tr>
</thead>
<tbody>
<tr>
<td>Running</td>
<td></td>
</tr>
<tr>
<td>• Boom hoist</td>
<td>6 Months*</td>
</tr>
<tr>
<td>• Main and auxiliary hoist</td>
<td>3 Years</td>
</tr>
<tr>
<td>Static</td>
<td>5 Years</td>
</tr>
</tbody>
</table>

* NOTE: Depending on duty cycle, may be extended to 1 year with approval from the Lifting and Hoisting TA or designee.
3.1.3 Changing Wire Rope Using a Cable Grip (Snake)

This operation requires a written procedure and JSA that at a minimum covers the following:

- hazards related to wire grips slipping or parting,
- the correct size cable grip (snake) for the wire rope; do not use the grip if the size is not listed on the grip,
- performing a pre-use inspection of the cable grip,
- requirement that only an LSG-X Lewis snake grip be used,
- cleaning the wire thoroughly with solvent or cleaner,
- manufacturer's recommended practice for installation and securing methods,
- keeping the boom angle as low as possible to avoid excess strain on cable grip,
- keeping the pulling speed to a minimum, and
- posting someone at the sheaves each time the grip is passed through, to stop operations if there is a hang up.
1 Overview

1.1 In this Chapter
This Procedure provides the following:
- Competency matrix and training course details
- Additional offshore pedestal crane competency requirements

1.2 Training Authority
The custodian of OPS0055 approves all training courses outlined in the Competency Matrix below. Approved courses will be designated as “DW-GOM-Accepted”.

1.3 Competency Assessment
To ensure competency of lifting appliance QO/QPs, employers shall have a competency assessment process in place. In addition, DW-GOM shall specifically ensure the competency of Offshore Pedestal Crane QOs by performing assessments of all offshore pedestal crane QOs every 2 years using a DW-GOM-accepted offshore pedestal crane operator competency assessment tool.

1.4 Local Lifting Focal Point (LLFP)
Qualifications are as follows:
- Level 1D QO for Offshore pedestal mounted cranes.
- LLFP training every 2 years
- Relevant onshore or offshore crane operator and rigging schools
- Competency assessment training defined and approved by custodian of OPS0055
- Detailed training/SME on the OPS0055 standard and requirements

2 Competency Matrix

2.1 Competency Matrix
To demonstrate competency for HSE critical roles, individuals shall identify their roles in the in OPS0055-PR05-TO.01 and complete the required training.

3 Training Course Details

3.1 Training Course Details
Details concerning DW-GOM-accepted OPS0055 courses are provided in OPS0055-PR05-TO.02.
3.2 Training Course Curricula

Individual training course curricula will be available separately and posted on the DW-GOM HSE Controlled Document site.

3.3 DW-GOM-Accepted Contractor Training Courses

Contractors may develop their own training courses to meet the competency and training requirements of this document. For a contractor’s training to be accepted by DW-GOM, the contractor must:

- show a business need,
- meet the course curricula requirements of the OPS0055 Lifting and Hoisting training curricula,
- have the course approved as “DW-GOM-accepted” by the custodian of OPS0055 Lifting and Hoisting (i.e. DW-GOM’s Technical Authority for Lifting and Hoisting), and
- agree to submit all training records to DW-GOM’s Training Database for tracking purposes.

NOTE: Contact Shell’s Robert Training and Conference Center (SRTCC) for details on DW-GOM’s Training Database at 504-728-1200 or 985-543-1200.

4 Additional Offshore Pedestal Crane Competency Requirements

4.1 Offshore Pedestal Cranes

Additional competency requirements related to offshore pedestal cranes are listed below.

4.2 Offshore Pedestal Crane Authorization Levels

After successful completion of DW-GOM-accepted offshore pedestal crane operation and rigging training, QOs of offshore pedestal cranes will be assessed by the approved third party competency assessor. After the competency assessment, the QO is authorized to conduct lifts in accordance with the offshore pedestal crane operator authorization levels below. As stated in OPS0055-PR05-TO-01, operators less than 2QO will attend DW-GOM-accepted offshore pedestal crane operation and rigging training annually, unless otherwise approved in writing by the Lifting and Hoisting Discipline Lead. Operators never having been third-party assessed at a Shell location will not be allowed to operate until the assessment is performed. Qualified Operators, Deck Supervisors and Deck Operators who have been assessed multiple times may be exempt from Assessments by requesting a written waiver from the L&H Discipline Lead.

The DW-GOM Contractor/Supervisor is responsible for ensuring that the following tasks are performed by the LLFP:

- Ensure personnel performing lifts have proper training and qualification before lifting begins. Training information is forwarded to DW-GOM Training Database.

See OPS0055-PR05-TO.03 Offshore Pedestal Crane Operator Authorization Level Verification Form.
4.3 Offshore Pedestal Cranes Log Requirements

The QO shall keep a logbook to record the following information on all lifts:
- Date of lift
- Type of lift: static or dynamic
- Category of lift: routine, critical, complex/engineered, or heavy engineered
- Weight (approximate)
- Supervised or unsupervised

The QO shall also record authorization level verification records in his/her logbook to include the following:
- Date
- Signature
- Authorization level achieved

4.4 DSP Requirements

All riggers attending the Offshore Pedestal Crane Rigging training will be required to:
- Fill out a history profile for experience level
- Be given a no-prep written test to validate this level
- Be assessed by instructor for experience level and qualifications for DSP endorsement
- Be given an endorsement (OR NOT) for DSP subject to written and hands-on tests specific to DSP

NOTE: Any current rigger to be used as DSP who does not have a DSP endorsement must have a DSP Competence Assessment by attending a re-qualification. Any contractor with less than 6 months service in the same job/position with their present employer will be considered a Short Service Employee (SSE). SSEs cannot act as DSPs.

4.5 Recordkeeping

In accordance with 46 CFR 109.437 Crane record book, each location must have a file for each crane.

The master or person in charge shall ensure that the following are maintained in a crane record book:
- Descriptive information to identify each crane including:
 - The API name plate data
 - The rated load chart for each line reeving and boom length that may be used.
- Dates and results of frequent inspections
- Dates and results of periodic inspections and tests
- Date and result of each rated load test, along with pre- and post-inspections.
- Date and description of each replacement or renewal of wire rope, hooks, and other load components.
- Date and description of each failure of the crane, or any component or safety feature.
- Date and description of each repair to the crane structure, boom, or equipment.
4.5 Authorization Level Requirements

The table below details the authorization level requirements for offshore pedestal crane QOs.

<table>
<thead>
<tr>
<th>Level</th>
<th>Must Complete To Operate At This Level</th>
<th>Static</th>
<th>Allowed Lifts Dynamic (From Boats)</th>
<th>Perform Maintenance</th>
<th>Perform Inspections</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 OT</td>
<td>2 Months Experience and 25 Supervised Static Lifts<sup>1</sup></td>
<td>Unsupervised up to 5 Tons</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>1A QO</td>
<td>3 Months Experience and 75 Static Lifts<sup>1</sup> (50 Unsupervised)</td>
<td>Unsupervised up to 5 Tons</td>
<td>Supervised<sup>2</sup> up to 5 Tons</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>1B QO</td>
<td>(25) 5 Ton or Less Dynamic Lifts<sup>1</sup></td>
<td>Unsupervised up to 5 Tons</td>
<td>Unsupervised up to 5 Tons</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>1C QO</td>
<td>(25) 5 Ton or Less Unsupervised Dynamic Lifts<sup>1</sup></td>
<td>Unsupervised up to 15 Tons</td>
<td>Unsupervised up to 15 Tons</td>
<td>Yes Supervised<sup>2</sup></td>
<td>No</td>
</tr>
<tr>
<td>1D QO</td>
<td>(10) Dynamic Lifts<sup>1</sup> Between 5 Tons and 15 Tons</td>
<td>Supervised<sup>2</sup> over 15 Tons</td>
<td>Supervised<sup>2</sup> over 15 Tons</td>
<td>Yes Supervised<sup>2</sup></td>
<td>Yes</td>
</tr>
<tr>
<td>2 QO<sup>3</sup></td>
<td>(10) Personnel Lifts<sup>1</sup> and be assessed by the Competency Assessor as fully competent for any and all unsupervised lifts</td>
<td>Unlimited</td>
<td>Unlimited</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

1. Recorded in QO Log Book
2. Supervised by Fully Qualified Level 2 QO or LLFP
3. Currency Requirements: Level 2 Qualified Operator must show evidence of 50 static and 25 dynamic lifts in last 12-month period or be moved back to Level 1D QO.

Dynamic lifts referred to above are lifts from supply boats

OT = Operator Trainee; QO = Qualified Operator
TOOL OPS0055-PR05-TO.01

Competency Matrix

To demonstrate competency for HSE critical roles, individuals shall identify their roles in the matrix below and complete the required training.

<table>
<thead>
<tr>
<th>Competency</th>
<th>Qualified Rigger</th>
<th>Qualified Operator/Qualified Person</th>
<th>Qualified Inspector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminal Personnel Inspecting Cargo for Shipment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local Lifting Focal Point</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ONSHORE Mobile Cranes Only</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OFFSHORE Mobile Cranes Only</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Qualified Rigger</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Qualified Operator/Qualified Person</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Qualified Inspector</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DW-GOM-Accepted OPS0055 Courses</th>
<th>Course Number</th>
<th>Obsolete Course Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offshore Pedestal Crane Rigging (Only)</td>
<td>HSSMGT002037</td>
<td>PH 4135</td>
</tr>
<tr>
<td>Onshore Mobile Crane Rigging (Only)</td>
<td>HSSMGT001447</td>
<td>PH 4149</td>
</tr>
<tr>
<td>General Lifting Appliance Operation and Rigging</td>
<td>HSSMGT001425</td>
<td>PH 4145</td>
</tr>
<tr>
<td>Offshore Pedestal Crane Operation and Rigging</td>
<td>HSSMGT001480</td>
<td>PH 4138</td>
</tr>
<tr>
<td>NCCCO Certification</td>
<td>HSSMGT001484</td>
<td>PH 4148</td>
</tr>
<tr>
<td>Aerial Platform Operation</td>
<td>HSSMGT001446</td>
<td>PH 4148</td>
</tr>
<tr>
<td>Gin Pole Truck/Autocrane Operation and Rigging</td>
<td>HSSMGT001490</td>
<td>PH 4150</td>
</tr>
<tr>
<td>Powered Industrial Truck Operation</td>
<td>HSSMGT001414</td>
<td>PH 4150</td>
</tr>
<tr>
<td>Powered Overhead Crane Operation and Rigging</td>
<td>HSSMGT001489</td>
<td>PH 4151</td>
</tr>
<tr>
<td>Man-Riding Winch Operation</td>
<td>HSSMGT001483</td>
<td>PH 4153</td>
</tr>
<tr>
<td>Local Lifting Focal Point Training (Offshore)</td>
<td>HSSMGT001476</td>
<td>PH 4130</td>
</tr>
<tr>
<td>Local Lifting Focal Point Training (Onshore)</td>
<td>HSSMGT001424</td>
<td>PH 4156</td>
</tr>
<tr>
<td>Rigging Gear Inspector</td>
<td>HSSMGT001471</td>
<td>PH 4155</td>
</tr>
<tr>
<td>Terminal Cargo Inspector</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>OFFSHORE: Applicable USCG, BSEE, or API RP 2D Crane Inspector</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>ONSHORE: Applicable OSHA, ASME, API RP 2D Crane Inspector</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>DW-GOM Offshore Mechanic: SPBP Level 3 Mechanic</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Contractor or DW-GOM Offshore Mechanic: Crane Mechanic</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

1: For LLFPs on offshore facilities
2: For LLFPs on onshore facilities either CCO preparatory class or approved ASME training
3: Reserved for future use.
4: Shell specific class on OPS0055 in addition to NCCCO Certification.
5: Operators less than 2QO will attend DW-GOM-accepted offshore pedestal crane operation and rigging training annually, unless otherwise approved in writing by the Crane Resource Coordinator.

NOTE: DW-GOM’s Specialist Crane Inspectors (SCIs) and Competency Assessors will be trained and appointed by this Standard’s custodian.
Details concerning DW-GOM-accepted OPS0055 courses are provided in the table below.

<table>
<thead>
<tr>
<th>Course</th>
<th>Covers</th>
<th>Prerequisites</th>
<th>Target Audience</th>
<th>Training Delivery</th>
<th>Proof of Training</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offshore Pedestal Crane Rigging (Only)</td>
<td>Includes API RP 2D training on lifting devices, lifting accessories and lifted equipment. Includes Awareness Training review and OPS0055 content relevant to curriculum.</td>
<td>Anyone rigging offshore pedestal cranes, including boat riggers</td>
<td>SRTCC or API TPCP provider with curriculum verified to meet minimum Shell requirements</td>
<td>Certification issued by SRTCC or DW-GOM-approved training provider and entry in Training Database</td>
<td></td>
</tr>
<tr>
<td>Offshore Mobile Crane Rigging (Only)</td>
<td>Includes mobile crane, gin pole and autocrane rigging. Includes training on lifting accessories and lifted equipment. Includes Awareness Training review and OPS0055 content relevant to curriculum.</td>
<td>Anyone rigging onshore</td>
<td>3rd party training providers with curriculum verified to meet minimum Shell requirements</td>
<td>Certification issued by DW-GOM-approved training provider and entry in Training Database</td>
<td></td>
</tr>
<tr>
<td>General Lifting Appliance Operation and Rigging</td>
<td>Operation of manual lever hoists, Tiffor/come-along, manual overhead hoist, chain hoist, jacks, winches, beam clamps and fixed lifting points. Includes Awareness Training review and OPS0055 content relevant to curriculum.</td>
<td>Onshore and offshore fitters/welders, mechanics, production operators, etc. that routinely use subject devices in performing their jobs (note exclusion for irregular use)</td>
<td>SRTCC or 3rd party providers / construction contractors with curriculum verified to meet minimum Shell requirements</td>
<td>Certification issued by SRTCC or DW-GOM-approved training provider and entry in Training Database</td>
<td></td>
</tr>
<tr>
<td>Offshore Pedestal Crane Operation and Rigging</td>
<td>API RP 2D Pedestal Crane Operator Certification, Hands on training, Competency Assessment, Includes Awareness Training review and OPS0055 content relevant to curriculum.</td>
<td>Annual training on OPS0055</td>
<td>Offshore pedestal crane operators</td>
<td>SRTCC delivered course</td>
<td>Certification by SRTCC and entry in Training Database</td>
</tr>
<tr>
<td>NCCCO Certification</td>
<td>NCCCO certification for mobile cranes</td>
<td>Onshore Mobile Crane Rigging</td>
<td>Onshore mobile crane operators</td>
<td>NCCCO</td>
<td>NCCCO Certification</td>
</tr>
<tr>
<td>Aerial Platform Operation</td>
<td>Operation of spiders, scissors lift, personnel work baskets. Includes Awareness Training review and OPS0055 content relevant to curriculum.</td>
<td>Onshore and offshore aerial platform operators</td>
<td>3rd party training providers with curriculum verified to meet minimum Shell requirements</td>
<td>Certification issued by DW-GOM-approved (OSHA/ASME) approved training provider and entry in Training Database</td>
<td></td>
</tr>
<tr>
<td>Gin Pole Truck / Autocrane Operation and Rigging</td>
<td>Operation of gin pole trucks and autocranes. Includes Awareness Training review and OPS0055 content relevant to curriculum.</td>
<td>Gin pole and autocrane operators</td>
<td>3rd party training providers with curriculum verified to meet minimum Shell requirements</td>
<td>Certification issued by DW-GOM-approved (OSHA/ASME) approved training provider and entry in Training Database</td>
<td></td>
</tr>
<tr>
<td>Powered Industrial Truck Operation</td>
<td>Operation of forklifts. Includes Awareness Training review and OPS0055 content relevant to curriculum.</td>
<td>Forklift operators</td>
<td>3rd party training providers with curriculum verified to meet minimum Shell requirements</td>
<td>Certification issued by DW-GOM-approved (OSHA/ASME) approved training provider and entry in Training Database</td>
<td></td>
</tr>
<tr>
<td>Powered Overhead Crane Operation and Rigging</td>
<td>Operation of powered overhead cranes. Includes Awareness Training review and OPS0055 content relevant to curriculum.</td>
<td>Personnel operating large powered overhead cranes, etc. logistics terminals, Auger wellbay, etc.</td>
<td>3rd party training providers with curriculum verified to meet minimum Shell requirements</td>
<td>Certification issued by DW-GOM-approved (OSHA/ASME) approved training provider and entry in Training Database</td>
<td></td>
</tr>
</tbody>
</table>

The controlled version of this "Business Control Document" resides online. Printed copies are UNCONTROLLED.
<table>
<thead>
<tr>
<th>Course</th>
<th>Covers</th>
<th>Prerequisites</th>
<th>Target Audience</th>
<th>Training Delivery</th>
<th>Proof of Training</th>
</tr>
</thead>
<tbody>
<tr>
<td>Man-Riding Winch Operation</td>
<td>Operation of dedicated man-riding winches. Includes Awareness Training and OPS0055 content relevant to curriculum.</td>
<td></td>
<td>Personnel operating winches used for handling personnel</td>
<td>3rd party training providers with curriculum verified to meet minimum Shell requirements</td>
<td>Certification issued by DW-GOM-approved (OSHA/ASME) approved training provider and entry in Training Database</td>
</tr>
<tr>
<td>Local Lifting Focal Point Training</td>
<td>Introduction to DW-GOM Lifting and Hoisting support group.</td>
<td>Min. 1D QO</td>
<td>Personnel selected by location to act as LLFP</td>
<td>SRTCC provided with curriculum verified by Lifting and Hoisting Technical Authority</td>
<td>Certification by SRTCC and entry in Training Database</td>
</tr>
<tr>
<td>Rigging Gear Inspector</td>
<td>Inspection of loose rigging for cargo traveling offshore. Includes Awareness Training review and OPS0055 content relevant to curriculum.</td>
<td>PH4149, PH4135, and PH4146</td>
<td>Rigging Inspectors at marine terminals</td>
<td>3rd party training providers with curriculum verified to meet minimum Shell requirements</td>
<td>Certification issued by DW-GOM-approved training provider</td>
</tr>
<tr>
<td>Terminal Cargo Inspector</td>
<td>Lifted equipment, accessories, OPS0055-PR02-TO.12 validation, OPS0055-PR02-TO.10 Pre-shipping Checklist.</td>
<td></td>
<td>Terminal personnel responsible for inspecting cargo going offshore</td>
<td>3rd party training providers with curriculum verified to meet minimum Shell requirements</td>
<td>Certification issued by DW-GOM-approved training provider</td>
</tr>
<tr>
<td>OFFSHORE: Applicable USCG, BOEMRE, or API RP 2D Crane Inspector</td>
<td>Inspection requirements for offshore pedestal cranes.</td>
<td></td>
<td>Offshore pedestal crane inspectors</td>
<td>3rd party training providers with curriculum verified to meet minimum Shell requirements</td>
<td>Certification issued by DW-GOM-approved training provider</td>
</tr>
<tr>
<td>ONSHORE: Applicable OSHA, ASME, API RP 2D Crane Inspector</td>
<td>Inspection requirements for onshore mobile cranes.</td>
<td></td>
<td>Onshore mobile crane inspectors</td>
<td>3rd party training providers with curriculum verified to meet minimum Shell requirements</td>
<td>Certification issued by DW-GOM-approved training provider</td>
</tr>
<tr>
<td>DW-GOM Offshore Mechanic: SPBP Level 3 Mechanic</td>
<td>Mechanical competencies to repair and maintain offshore pedestal cranes.</td>
<td></td>
<td>DW-GOM Mechanics</td>
<td>Skill Performance Base Pay (SPBP)</td>
<td>SPBP records</td>
</tr>
<tr>
<td>Contractor or DW-GOM Onshore Mechanics: Crane Mechanic</td>
<td>Mechanical competencies to repair and maintain onshore mobile cranes.</td>
<td></td>
<td>Contractor or DW-GOM Mechanics</td>
<td>Skill Performance Base Pay (SPBP) and contractor competency programs</td>
<td>SPBP records and contractor training records</td>
</tr>
</tbody>
</table>

The controlled version of this “Business Control Document” resides online. Printed copies are UNCONTROLLED.
TOOL OPS0055-PR05-TO.03

Offshore Pedestal Crane Operator Authorization Level Verification Form

I ______________________ (DW-GOM/Contractor Supervisor’s name) verify (Print)
that ______________________ (QO’s name) has satisfied the requirements of (Print)

following authorization levels as per the Offshore Pedestal Crane Operator Authorization

Level Requirements section in the OPS0055-PR05 Competency Requirements:

☐ 1 OT
☐ 1A QO
☐ 1B QO
☐ 1C QO
☐ 1D QO
☐ 2 QO

QO’s Employer

QO’s ID Number
☐ Shell Employee Number
☐ Contractor’s Social Security Number
☐ Contractor’s Driver’s license Number

QO’s Signature

LLFP’s Signature

DW-GOM Contractor/Supervisor’s Signature

Location

Date

Crane Manufacturer

Crane Model

Scan and e-mail this completed form to:
Shell Robert Training and Conference Center
E-mail: mailto:rtc-crane.lifting@shell.com

Call SRTCC at (985) 543-1200 for e-mail verification if desired.
<table>
<thead>
<tr>
<th>File</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CGM.pptx</td>
<td>2016 Crane Governance Model - CHANGE MANAGEMENT- SOU PACKAGE</td>
</tr>
<tr>
<td>CGMRACI.xlsx</td>
<td>Crane Governance Model - RACI Chart</td>
</tr>
<tr>
<td>UTLOC.xlsm</td>
<td>Crane Governance Lifting and Hoisting Roles and Responsibilities</td>
</tr>
<tr>
<td>Crane Governance Lifting and Hoisting Roles and Responsibilities</td>
<td></td>
</tr>
<tr>
<td>UTL Crane Ops Onboarding Checklist</td>
<td>2016 Crane Governance Model - CHANGE MANAGEMENT- SOU PACKAGE</td>
</tr>
<tr>
<td>Crane Governance Model - RACI Chart</td>
<td></td>
</tr>
</tbody>
</table>